Page 9 of 11
Journal of the American Chemical Society
with experimental setup. XRD (Xavi Fontrodona) and HRMS
(Dr. Laura Gómez) data was collected at STRꢀUdG.
Representative stoichiometric reaction of 4b-OAc with
1
2
3
4
5
6
7
8
alkynes. In a 2 mL vial, 4b-OAc (40mg, 0.077 mmol) and
alkyne (0.077 mmol) were mixed in TFE (1.5 mL). The vial
was then sealed with a septum and the mixture was stirred
for 16h at different temperatures. Then, after removal of
TFE, NH4OH (2 mL) was added and the solution was exꢀ
tracted using CH2Cl2 (2x5mL). Products were purified by
column chromatography on silica gel (CH2Cl2, then
CH2Cl2/MeOH 95:5) and characterized by NMR techniques
and HRMS (see Supporting Information for full details).
REFERENCES
(1) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int.
Ed. 2012, 51, 8960.
(2) Chen, X.; Engle, K. M.; Wang, D.ꢀH.; Yu, J.ꢀQ. Angew. Chem.
Int. Ed. 2009, 48, 5094.
(3) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004,
104, 6217. (b) Ambhaikar, N. In C-H Bond Activation in Organic
Synthesis; CRC Press: Boca Raton, FL, 2015, p 145.
9
Representative catalytic reaction of 4b-OAc with alkynes.
In a 2 mL vial, 2b-H (0.077 mmol) and alkyne (0.154
mmol) were mixed in TFE (1.5 mL) with 10ꢀ20 mol% of 4b-
OAc. The vial was then sealed with a septum and the mixꢀ
ture was stirred for 16h at 80ºC. After removal of the solꢀ
vent, NH4OH (2 mL) was added and the solution was exꢀ
tracted using CH2Cl2 (2x5mL). Then, products were purified
by column chromatography on silica gel (CH2Cl2, then
CH2Cl2/MeOH 95:5) and characterized by NMR techniques.
1,3,5ꢀtrimethoxybenzene was used as internal standard in
selected cases (see Supporting Information for full details).
(4) (a) Guo, X.ꢀX.; Gu, D.ꢀW.; Wu, Z.; Zhang, W. Chem. Rev. 2015,
115, 1622. (b) Ahmad, N. In C-H Bond Activation in Organic
Synthesis; CRC Press: Boca Raton, FL, 2015, p 175.
(5) (a) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6,
498. (b) Wei, D.; Zhu, X.; Niu, J.ꢀL.; Song, M.ꢀP. ChemCatChem
2016, 8, 1242. (c) Gao, K.; Yoshikai, N. Acc. Chem.
Res. 2014, 47, 1208.
(6) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014,
509, 299. (b) Williams, A. In C-H Bond Activation in Organic
Synthesis; CRC Press: Boca Raton, FL, 2015, p 113.
(7) Gensch, T.; Klauck, F. J. R.; Glorius, F. Angew. Chem. Int. Ed.
2016, 55, 11287.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) (a) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc.
Chem. Res. 2012, 45, 814. (b) Song, G.; Wang, F.; Li, X. Chem.
Soc. Rev. 2012, 41, 3651. (c) Satoh, T.; Miura, M. Chem. Eur. J.
2010, 16, 11212.
ASSOCIATED CONTENT
Supporting Information
(9) Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196.
(10) (a) Wu, X.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.; Ge, H. Nat.
Commun. 2015, 6, 6462. (b) Grigorjeva, L.; Daugulis, O. Org. Lett.
2014, 16, 4684. (c) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16,
4688. (d) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015,
137, 490. (e) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.;
Glorius, F. Angew. Chem. Int. Ed. 2015, 54, 4508. (f) Gandeepan,
P.; Rajamalli, P.; Cheng, C.ꢀH. Angew. Chem. Int. Ed. 2016, 13,
4308. (g) Li, J.; Tang, M.; Zang, L.; Zhang, X.; Zhang, Z.;
Ackermann, L. Org. Lett. 2016, 18, 2742. (h) Li, L.; Wang, H.; Yu,
S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662. (i) Ma, W.;
Ackermann, L. ACS Catal. 2015, 5, 2822. (j) Wang, H.; Lorion, M.
M.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 10386.
(11) (a) Zhang, J.; Chen, H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y.
J. Am. Chem. Soc. 2015, 137, 12990. (b) Grigorjeva, L.; Daugulis,
O. Angew. Chem. Int. Ed. 2014, 53, 10209. (c) Nguyen, T. T.;
Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551. (d) Planas,
O.; Whiteoak, C. J.; Company, A.; Ribas, X. Adv. Synth. Catal.
2015, 357, 4003. (e) Kalsi, D.; Sundararaju, B. Org. Lett. 2015, 17,
6118. (f) Zhang, L.ꢀB.; Hao, X.ꢀQ.; Liu, Z.ꢀJ.; Zheng, X.ꢀX.; Zhang,
S.ꢀK.; Niu, J.ꢀL.; Song, M.ꢀP. Angew. Chem. Int. Ed. 2015, 54,
10012. (g) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.;
Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (h) Lu, Q.; Vásquezꢀ
Céspedes, S.; Gensch, T.; Glorius, F. ACS Catal. 2016, 6, 2352. (i)
Kim, J. H.; Greßies, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55,
5577. (j) Mei, R.; Wang, H.; Warratz, S.; Macgregor, S. A.;
Ackermann, L. Chem. Eur. J. 2016, 22, 6759. (k) Hao, X.ꢀQ.; Du,
C.; Zhu, X.; Li, P.ꢀX.; Zhang, J.ꢀH.; Niu, J.ꢀL.; Song, M.ꢀP. Org.
Lett. 2016, 18, 3610.
General considerations, experimental details for the preparation
and characterization of ligands 2b-H and 2c-H, and compounds
4b-OAc, 4c-Oac, 4b-CH3CN, 4c-CH3CN, 5c-Cl, 7 and 8;
optimization details; experimental details of stoichiometric
reactions of 4b-OAc with alkynes; experimental details of cataꢀ
lytic reactions of 4b-OAc with alkynes; XYZ coordinates for
DFT structures; full XAS analysis; full characterization of comꢀ
pounds; XꢀRay parameters and original NMR spectra (PDF).
Crystallographic data for compounds 3b-OAc (CCDCꢀ
1493341), 3c-Br (CCDCꢀ1493342), 4b-CH3CN (CCDCꢀ
1493343), 4c-CH3CN (CCDCꢀ1493344), 5c-Cl (CCDCꢀ
1493345) and arylꢀCo(III) species using nitroꢀaminoquinoline
model substrate 8 (CCDCꢀ1493346) can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*xavi.ribas@udg.edu
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(12) (a) Robitzer, M.; Bouamaïed, I.; Sirlin, C.; Chase, P. A.; van
Koten, G.; Pfeffer, M. Organometallics 2005, 24, 1756.
(b) Meneghetti, Mario R.; Grellier, M.; Pfeffer, M.; Cian, André D.;
Fischer, J. Eur. J. Inorg. Chem. 2000, 2000, 1539.
(13) (a) Harvey, J. D.; Ziegler, C. J. Chem. Commun. 2004, 14,
1666. (b) Çetin, A.; Sripothongnak, S.; Kawa, M.; Durfee, W. S.;
Ziegler, C. J. Chem. Commun. 2007, 41, 4289.
(14) Wang, Y.ꢀC.; Chen, J.ꢀH.; Wang, S.ꢀS.; Tung, J.ꢀY. Inorg.
Chem. 2013, 52, 10711.
(15) Maity, S.; Kancherla, R.; Dhawa, U.; Hoqtungue, E.;
Pimparkar, S.; Maiti, D. ACS Catal. 2016, 6, 5493.
We acknowledge financial support from the European Research
Council for the Starting Grant Project ERCꢀ2011ꢀStGꢀ277801 to
X.R. and from MINECO of Spain for project CTQ2013ꢀ43012ꢀ
P to A.C. and X.R., CTQ2014ꢀ52525ꢀP to J.M.L and STQ2015ꢀ
64436ꢀP to T.P. We also thank Generalitat de Catalunya for
projects 2014SGR862 and 2014SGR931. We thank the MECD
of Spain for a FPU PhD grant to O.P. and MINECO for a
Ramón y Cajal contract to A.C. X.R. also thanks ICREA for an
Academia award. In addition, the research leading to these
results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007ꢀ2013) under grant
agreement nº 312284. XAS data was collected at Elettra and
SOLEIL synchrotron facilities. We thank Dr. Luca Olivi from
Elettra and Dr. Landrot Gautier from SOLEIL for their help
(16) Ribas, X.; Calle, C.; Poater, A.; Casitas, A.; Gómez, L.; Xifra,
R. l.; Parella, T.; BenetꢀBuchholz, J.; Schweiger, A.; Mitrikas, G.;
Solà, M.; Llobet, A.; Stack, T. D. P. J. Am. Chem. Soc. 2010, 132,
12299.
(17) (a) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.;
Ribas, X. Chem. Sci. 2010, 1, 326. (b) Huffman, L. M.; Casitas, A.;
ACS Paragon Plus Environment
9