Mendeleev Commun., 2007, 17, 325–326
chalcogenides 2a–c were confirmed by the cross peaks of the
R
P
Li+
X
1
1
R
P
ethenyl and methyl protons in the H– H NOESY spectra,
indicating their cis disposition relative to the double bond.
Upon heating (58–60 °C, 7–10 h) in the presence of equimolar
amounts of LiOH in THF, adducts 2a–c cleanly and quanti-
R
X
R
CN
CN
LiOH
2
a–c
+Li
– H2O
O
O
Me
Me
Me
X
Me
3
1
tatively ( P NMR) rearranged to (2E)-3-cyano-1,1-dimethyl-
R
2-propen-1-yl bis(2-phenylethyl)phosphinate 3a, O-[(2E)-3-cyano-
1,1-dimethyl-2-propen-1-yl] bis(2-phenylethyl)phosphinothioate
3b and O-[(2E)-3-cyano-1,1-dimethyl-2-propen-1-yl] bis[2-
R
+ CN
Li
H O
2
P
3
a–c
O
– LiOH
(
2-pyridyl)ethyl]phosphinothioate 3c (Scheme 2) with isolated
Me
Scheme 3
Me
‡
yields of 82–86% after purifying on Al O .
2
3
CN
1
3a–c is supported by the 31P NMR chemical shifts (54.92 ppm
for 3a and 96–97 ppm for 3b,c), the availability of signals for
X
2
LiOH
O
2
a–c
R
P
1
THF, 58–60 °C
Me
two ethenyl protons in the H NMR spectra, the absence of a
Me
a–c
a R = PhCH CH , X = O
R
1
13
JP–Cethenyl coupling in the C NMR spectra and the absence of
3
the stretching vibrations of the OH group in the IR spectra.
To the best of our knowledge, a rearrangement of this type
for β-hydroxyalkylphosphine chalcogenides is unknown, although
α-hydroxy analogues are reported to isomerise with oxygen
atom insertion into the neighbouring P–C bond, most often in
the presence of bases.4
2
2
b R = PhCH CH , X = S
2
2
c R = 2-PyCH CH , X = S
2
2
Scheme 2
In the absence of LiOH this process did not occur. The
mechanism of the rearrangement observed can be rationalised
as intramolecular nucleophilic substitution at the four-coordinated
phosphorus atom by the alkoxide anion. It seems likely that the
Thus, the synthesis of two families of functionalised unsaturated
organophosphorus compounds from available secondary phosphine
5
chalcogenides and the nitriles of α,β-acetylenic γ-hydroxy
+
6
process is Li -assisted (Scheme 3).
acids has been developed, and a new intramolecular rearrange-
The mechanism shown in Scheme 3 is in accordance with the
E-configuration of rearrangement products 3a–c. The presence
of the X=P–O–C–CH=CH fragment (X = O, S) in products
ment of the initial adducts involving oxygen atom insertion into
the P–C bond has been observed.
This work was supported by the Russian Foundation for
Basic Research (grant no. 07-03-00562).
‡
General procedure for the preparation of compounds 3. A mixture of
pentenenitrile 2 (0.60 mmol) and LiOH (0.014 g, 0.60 mmol) in 5 ml
of THF was stirred at 58–60 °C for 7 (2a) or 10 h (2b,c), cooled and
passed through a layer of Al O (0.5 cm). Then, THF was removed under
reduced pressure; the residue was dried in a vacuum.
2E)-3-Cyano-1,1-dimethyl-2-propen-1-yl bis(2-phenylethyl)phosphinate
References
2
3
1
(a) A. F. Parsons, D. J. Sharpe and P. Taylor, Synlett, 2005, 2981;
b) S. N. Arbuzova, N. K. Gusarova, M. V. Bogdanova, N. I. Ivanova,
I. A. Ushakov, A. G. Mal’kina and B. A. Trofimov, Mendeleev Commun.,
005, 183; (c) S. N. Arbuzova, N. K. Gusarova and B. A. Trofimov,
(
(
1
3
a: yield 86% (0.19 g); brown oil. H NMR (CDCl ) d: 1.63 (s, 6H,
3
2
Me), 1.97–2.02 (m, 4H, CH P), 2.80–2.87 (m, 4H, CH Ph), 5.38 (d, 1H,
2
2
Arkivoc, 2006, (v), 12; (d) M. Niu, H. Fu, Y. Jiang and Y. Zhao, Chem.
Commun., 2007, 272; (e) T. E. Glotova, M. Yu. Dvorko, S. N. Arbuzova,
I. A. Ushakov, S. I. Verkhoturova, N. K. Gusarova and B. A. Trofimov,
Lett. Org. Chem., 2007, 4, 109; (f) B. A. Trofimov, S. F. Malysheva,
N. K. Gusarova, N. A. Belogorlova, S. F. Vasilevsky, V. B. Kobychev,
B. G. Sukhov and I. A. Ushakov, Mendeleev Commun., 2007, 17, 181.
(a) Asymmetric Catalysis in Organic Synthesis, ed. R. Noyori, John
Wiley & Sons, New York, 1994; (b) Comprehensive Asymmetric Catalysis,
eds. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999;
2
3
1
3
4
H , J 16.4 Hz), 6.66 (dd, 1H, H , J 16.4 Hz, J 1.5 Hz), 7.10–7.27
HH
HH
PH
(
1
m, 10H, Ph). 13C NMR (CDCl ) d: 28.30 (Me, CH Ph), 32.17 (d, CH P,
3 2 2
2
2
JPC 88.0 Hz), 80.81 (d, CMe , J 8.1 Hz), 98.22 (C ), 116.76 (CºN),
2
PC
3
1
1
3
9
26.65 (C ), 128.10 (C ), 128.80 (C ), 140.49 (d, C , JPC 14.6 Hz),
p o m i
1
3
31
–1
57.93 (d, C , J 6.13 Hz). P NMR (CDCl ) d: 54.92. IR (n/cm ):
PC
3
100 (=CH), 2210 (CºN), 1640 (C=C), 1160 (P=O), 1145 (C–OP),
80 (P–O). Found (%): C, 71.65; H, 7.36; N, 3.64; P, 8.55. Calc. for
2
C H NO P (%): C, 71.92; H, 7.13; N, 3.81; P, 8.43.
2
2
26
2
O-[(2E)-3-Cyano-1,1-dimethyl-2-propen-1-yl] bis(2-phenylethyl)phos-
(c) Catalytic Asymmetric Synthesis, ed. I. Ojima, 2 edn., VCH Pubishers,
nd
1
phinothioate 3b: yield 83% (0.19 g); brown oil. H NMR (CDCl ) d:
Weinheim, 2000; (d) J. W. Faller, J. C. Wilt and J. Parr, Org. Lett., 2004,
6, 1301; (e) D. Liu, Q. Dai and X. Zhang, Tetrahedron, 2005, 61, 6460;
(f) G. C. Fu, Acc. Chem. Res., 2006, 39, 853; (g) Q. Dai, W. Gao, D. Liu,
L. M. Kapes and X. Zhang, J. Org. Chem., 2006, 71, 3928; (h) D. K.
Whelligan and C. Bolm, J. Org. Chem., 2006, 71, 4609.
3 B. A. Trofimov, Curr. Org. Chem., 2002, 6, 1121.
4 (a) L. Hall, C. Stephens and J. Dryzda, J. Am. Chem. Soc., 2007, 129,
305; (b) S. A. Buckler and M. Epstein, Tetrahedron, 1962, 18, 1211;
3
1
5
7
2
.67 (s, 6H, Me), 2.21–2.29 (m, 4H, CH P), 2.87–2.94 (m, 4H, CH Ph),
2 2
2
3
1
3
4
.37 (d, 1H, H , J 16.3 Hz), 6.78 (dd, 1H, H , J 16.3 Hz, J 1.4 Hz),
HH
HH
PH
13
3
.14–7.30 (m, 10H, Ph). C NMR (CDCl ) d: 28.92 (d, Me, J 3.7 Hz),
3
PC
2
1
9.92 (d, CH Ph, J 2.0 Hz), 39.14 (d, CH P, J 67.8 Hz), 81.87 (d,
2
PC
2
PC
2
2
CMe , J 8.1 Hz), 98.16 (C ), 116.78 (CºN), 127.46 (C ), 129.07 (C ),
1
3
2
PC
p
1
o
3
3
29.61 (C ), 140.42 (d, C , J 14.7 Hz), 158.25 (d, C , J 5.2 Hz).
m i PC PC
P NMR (CDCl ) d: 96.08. IR (n/cm ): 3100 (=CH), 2220 (CºN), 1653
1
–1
3
(c) V. S. Abramov, N. I. Dyakonova and V. D. Efimova, Zh. Obshch.
(
C=C), 1132 (C–OP), 984 (P–O), 617 (P=S). Found (%): C, 68.73; H,
Khim., 1969, 39, 1971 (in Russian); (d) A. N. Pudovik and M. G. Zimin,
Pure Appl. Chem., 1980, 52, 989; (e) F. Hammerschmidt, Monatsh.
Chim., 1993, 124, 1063; (f) S. Jankowski, J. Marczak, A. Olczak and
M. Glowka, Tetrahedron Lett., 2006, 47, 3341.
6
.68; N, 3.94; P, 8.28; S 8.17. Calc. for C H NOPS (%): C, 68.90;
22 26
H, 6.83; N, 3.65; P, 8.08; S 8.36.
O-[(2E)-3-Cyano-1,1-dimethyl-2-propen-1-yl] bis[2-(2-pyridyl)ethyl]-
1
phosphinothioate 3c: yield 82% (0.19 g); brown oil. H NMR (CDCl ) d:
3
5
(a) B. A. Trofimov, S. N. Arbuzova and N. K. Gusarova, Usp. Khim.,
1999, 68, 240 (Russ. Chem. Rev., 1999, 68, 215); (b) N. K. Gusarova,
M. V. Bogdanova, N. I. Ivanova, N. A. Chernysheva, B. G. Sukhov, L. M.
Sinegovskaya, O. N. Kazheva, G. G. Alexandrov, O. A. D’yachenko and
B. A. Trofimov, Synthesis, 2005, 3103.
1
5
7
.67 (s, 6H, Me), 2.46–2.53 (m, 4H, CH P), 3.09–3.15 (m, 4H, CH Py),
2 2
2
3
1
3
4
.43 (d, 1H, H , J 16.4 Hz), 6.80 (dd, 1H, H , J 16.4 Hz, J 1.7 Hz),
HH
HH
PH
5
3
4
.11 (m, 2H, H , Py), 7.16 (m, 2H, H , Py), 7.59 (m, 2H, H , Py), 8.50
6
13
3
(m, 2H, H , Py). C NMR (CDCl ) d: 28.08 (d, Me, J 2.0 Hz), 31.27
3 PC
1
2
(
CH Py), 35.81 (d, CH P, J 69.1 Hz), 81.86 (d, CMe , J 8.8 Hz),
6 S. R. Landor, B. Demetriou, R. Grzeskowiak and D. F. Pavey, J. Organomet.
Chem., 1975, 93, 129.
7 S. N. Arbuzova, S. I. Shaikhutdinova, N. K. Gusarova, M. V. Nikitin,
A. G. Mal’kina, B. G. Sukhov, M. V. Bogdanova and B. A. Trofimov,
Zh. Obshch. Khim., 2005, 75, 552 (Russ. J. Gen. Chem., 2005, 75, 514).
2
2
PC
2
3
PC
2
5
9
8.22 (C ), 116.88 (CºN), 121.71 (C , Py), 123.08 (C , Py), 136.64
4
6
1
3
2
(C , Py), 149.51 (C , Py), 158.24 (d, C , J 5.4 Hz), 159.79 (d, C , Py,
3
PC
31
–1
JPC 15.5 Hz). P NMR (CDCl ) d: 97.01. IR (n/cm ): 3100 (=CH),
3
2
210 (CºN), 1640 (C=C), 1140 (C–OP), 980 (P–O), 620, 605 (P=S).
Found (%): C, 62.45; H, 6.48; N, 10.65; P, 7.85; S, 8.09. Calc. for
C H N OPS (%): C, 62.32; H, 6.28; N, 10.90; P, 8.04; S, 8.32.
2
0
24
3
Received: 15th June 2007; Com. 07/2963
–
326 –