Communications
2002, pp. 211 – 247; c) K. V. Gothelf, K. A. Jørgensen, Chem.
Rev. 1998, 98, 863 – 909; d) K. V. Gothelf, K. A. Jørgensen,
Chem. Commun. 2000, 1449 – 1458.
[2] a) P. Allway, R. Grigg, Tetrahedron Lett. 1991, 32, 5817 – 5820;
b) R. Grigg, Tetrahedron: Asymmetry 1995, 6, 2475 – 2486; c) J.
Casas, R. Grigg, C. Nꢀjera, J. M. Sansano, Eur. J. Org. Chem.
2001, 1971 – 1982.
[3] For examples, see: a) P. Garner, O. Dogan, J. Org. Chem. 1994,
59, 4 – 6; b) M. E. Kopach, A. H. Fray, A. I. Meyers, J. Am.
Chem. Soc. 1996, 118, 9876 – 9883; c) I. Merino, Y. R. S. Laxmi, J.
Florez, J. Barluenga, J. Ezquerra, C. Pedregal, J. Org. Chem.
2002, 67, 648 – 655; d) J. L. G. Ruano, A. Tito, M. T. Peromingo,
J. Org. Chem. 2002, 67, 981 – 987.
[4] a) A. S. Gothelf, K. V. Gothelf, R. G. Hazell, K. A. Jørgensen,
Angew. Chem. 2002, 114, 4410 – 4412; Angew. Chem. Int. Ed.
2002, 41, 4236 – 4238; b) C. Alemparte, G. Blay, K. A. Jørgensen,
Org. Lett. 2005, 7, 4569 – 4572.
[5] a) J. M. Longmire, B. Wang, X. Zhang, J. Am. Chem. Soc. 2002,
124, 13400 – 13401; b) W. Gao, X. Zhang, M. Raghunath, Org.
Lett. 2005, 7, 4241 – 4244.
[6] C. Chen, X. Li, S. L. Schreiber, J. Am. Chem. Soc. 2003, 125,
10174 – 10175.
[7] Y. Oderaotoshi, W. Cheng, S. Fujitomi, Y. Kasano, S. Minakata,
M. Komatsu, Org. Lett. 2003, 5, 5043 – 5046.
[8] a) W. Zeng, Y. G. Zhou, Org. Lett. 2005, 7, 5055 – 5058; b) S.
Carbrera, R. Gꢁmez, J. C. Carretero, J. Am. Chem. Soc. 2005,
127, 16394 – 16395.
[9] a) Tꢂke and co-workers have found that the ratio of endo and
exo products is between 1.4:1 and 3.5:1 in the reaction of an
azomethine ylide with a nitroalkene in the presence of LiBr as
catalyst; this ratio changed to 1.25:1–1:2.3 with AgOAc as
catalyst: M. Nyerges, M. Rudas, G. Tꢁth, B. Herꢃnyi, I. Kꢀdas, I.
Bitter, L. Tꢂke, Tetrahedron 1995, 51, 13321 – 13330; b) T.
Sammakia, E. L. Stangeland, J. Org. Chem. 1997, 62, 6104 – 6105.
[10] a) L.-X. Dai, T. Tu, S.-L. You, W.-P. Deng, X.-L. Hou, Acc.
Chem. Res. 2003, 36, 659 – 667; b) W.-P. Deng, X.-L. Hou, L.-X.
Dai, X.-W. Dong, Chem. Commun. 2000, 1483 – 1484; c) W.-P.
Deng, S.-L. You, X.-L. Hou, L.-X. Dai, Y.-H. Yu, W. Xia, J. Am.
Chem. Soc. 2001, 123, 6508 – 6519; d) S.-L. You, X.-Z. Zhu, Y.-M.
Luo, X.-L Hou, L.-X. Dai, J. Am. Chem. Soc. 2001, 123, 7471 –
7472; e) T. Tu, X. L. Hou, L.-X. Dai, Org. Lett. 2003, 5, 3651 –
3653; f) X.-L. Hou, N. Sun, Org. Lett. 2004, 6, 4399 – 4401
(correction: X.-L. Hou, N. Sun, Org. Lett. 2005, 7, 1435).
[11] T. Tu, W.-P. Deng, X.-L. Hou, L.-X. Dai, X.-C. Dong, Chem. Eur.
J. 2003, 9, 3073 – 3081.
Figure 2. Calculated structures (A and B) of complexation modes of
CuI–3a with the anion of imino ester 1a and staggered transition-
structure models of nitrostyrene on the Si face of the Cu-bound imino
ester anion. Fe brown, Cu black, C green, O red, N blue, H violet.
exo product. When the aryl groups are electron-deficient,
however, structure 8b is stabilized by electrostatic interac-
tion, which leads to formation of the endo product.
The present report reveals for the first time the CuI-
catalyzed asymmetric 1,3-dipolar cycloaddition of azome-
thine ylides to nitroalkenes.[20] A high yield of either exo or
endo adducts can be achieved, with excellent enantioselec-
tivity, by using electron-rich or electron-deficient aryl groups
on the P atom of chiral P,N-ferrocene ligands, respectively. A
qualitative model has been proposed to rationalize the
observed stereoselectivity. These results point to a new
possibility to switch the stereoselectivity of the reaction by
varying the electronic properties of the ligands. Furthermore,
useful hints for ligand design are revealed. The application of
this reaction and the use of other electron-deficient alkenes as
dipolarophiles is currently being studied further.
[12] M. Ayerbe, A. Arrieta, F. P. Cossío, J. Org. Chem. 1998, 63,
1795 – 1805.
[13] See Supporting Information of ref. [5].
[14] S. Vivanco, B. Lecea, A. Arrieta, P. Prieto, I. Morao, A. Linden,
F. P. Cossío, J. Am. Chem. Soc. 2000, 122, 6078 – 6092.
[15] Other Cu and Ag salts, including Cu(OTf)2, CuOTf, CuBF4,
AgOTf, AgClO4, and AgBF4, were tested in the reaction of 1a
with 2a in the presence of ligands 3a or 3e under these
optimized reaction conditions. All Cu salts gave similar enantio-
and diastereoselectivities with comparable yields to the reaction
using CuClO4, while Ag salts gave somewhat higher yields of the
endo product but lower enantioselectivity.
Received: October 17, 2005
Revised: December 30, 2005
Published online: February 21, 2006
[16] For examples, see: a) E. N. Jacobsen, W. Zhang, M. L. Gꢄler, J.
Am. Chem. Soc. 1991, 113, 6703 – 6704; b) A. Schnyder, L.
Hintermann, A. Togni, Angew. Chem. 1995, 107, 996 – 998;
Angew. Chem. Int. Ed. Engl. 1995, 34, 931 – 933; c) T. V.
RajanBabu, A. L. Casalnuovo, J. Am. Chem. Soc. 1996, 118,
6325 – 6326; d) N. Nomura, Y. C. Mermet-Bouvier, T. V. Rajan-
Babu, Synlett 1996, 745 – 746; e) T. V. RajanBabu, T. A. Ayers,
G. A. Halliday, K. K. You, J. C. Calabrese, J. Org. Chem. 1997,
62, 6012 – 6028; f) A. Schnyder, A. Togni, U. Wiesli, Organo-
metallics 1997, 16, 255 – 260 (correction: A. Schnyder, A. Togni,
Keywords: asymmetric catalysis · azomethine ylides · copper ·
cycloaddition · diastereoselectivity
.
[1] Reviews: a) C. Nꢀjera, J. M. Sansano, Angew. Chem. 2005, 117,
6428 – 6432; Angew. Chem. Int. Ed. 2005, 44, 6272 – 6276;
b) K. V. Gothelf in Cycloaddition Reactions in Organic Synthesis
(Eds.: S. Kobayashi, K. A. Jørgensen), Wiley-VCH, Weinheim,
1982
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 1979 –1983