ORGANIC
LETTERS
2007
Vol. 9, No. 7
1399-1402
Hg(OAc)2‚0.1Sc(OTf)3-Catalyzed
Cycloisomerization of
2-(4-Pentynyl)furan
Hirofumi Yamamoto, Ikuo Sasaki, Hiroshi Imagawa, and Mugio Nishizawa*
Faculty of Pharmaceutical Sciences, Tokushima Bunri UniVersity, Yamashiro-cho,
Tokushima 770-8514, Japan
Received February 9, 2007
ABSTRACT
Although the Hg(OTf)2‚3TMU-catalyzed Friedel−Crafts-type reaction of 3-(4-pentynyl)furan afforded the exo cyclization product, the reaction of
2-(4-pentynyl)furan furnished a very low yield. We found a 10:1 mixed reagent of Hg(OAc)2 and Sc(OTf)3 showed remarkable catalytic activity
for the latter transformation. The actual reacting species is presumed to be Hg(OAc)(OTf), which is efficiently generated in situ by mixing the
two reagents.
Transition-metal-catalyzed cycloisomerization of arylalkynes
has been intensively studied and has played an important
role in modern organic synthesis.1 Electron-rich arenes react
with alkynes in the presence of electrophilic metal halides
or Brønsted acids.2 We have also reported six-endo cyclo-
isomerization of arylalkynes to give dihydronaphthalene
derivatives.3 Intramolecular reaction of furan with alkynes,
however, mostly affords phenolic products via Diels-Alder
reaction followed by a fragmentation.4 Although an endo
mode Friedel-Crafts-type cyclization of furanoalkynes af-
fording benzofurans has been reported,5 exo mode cyclization
of alkynyl furans has not been recorded except for one
example using PtCl2 as catalyst, affording a benzofuran
derivative.4e Therefore, the Friedel-Crafts-type cycloisomer-
ization of alkynyl furans is an almost unknown area of
research, and thus we have investigated the cycloisomeriza-
tions of 3-(4-pentynyl)furan (1) and 2-(4-pentynyl)furan (3)
by using the reagent that we originated, mercuric triflate [Hg-
(OSO2CF3)2, hereafter Hg(OTf)2].6-13 The latter type of
cycloisomerization (3 to 4) is entirely unknown. The reaction
(1) (a) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200-
203. (b) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328-2334.
(c) Fairlamb, I. J. S. Angew. Chem., Int. Ed. 2004, 43, 1048-1052. (d)
Aubert, C.; Buisine, O.; Malacria, M. Chem. ReV. 2002, 102, 813-834. (e)
Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001, 101, 2067-
2096.
(2) (a) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org. Chem. 2000,
65, 4913-4918. (b) Inoue, H.; Chatani, N.; Murai, S. J. Org. Chem. 2002,
67, 1414-1417. (c) Furstner, A.; Mamane, V. J. Org. Chem. 2002, 67,
6264-6267. (d) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 7900-7901. (e) Pastine, S. J.; Youn, S. W.; Sames,
D. S. Tetrahedron 2003, 59, 8859-8868. (f) Zhang, L.; Kozmin, S. A. J.
Am. Chem. Soc. 2004, 126, 10204-10205. (g) Zhang, Y.; Hsung, R. P.;
Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047-
1050.
(4) (a) Wu, H. J.; Ying, F. H.; Shao, W. D. J. Org. Chem. 1995, 60,
6168-6172. (b) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem.
Soc. 2000, 122, 11553-11554. (c) Hashmi, A. S. K.; Frost, T. M.; Bats, J.
W. Org. Lett. 2001, 3, 3769-3771. (d) Martin-Matute, B.; Cardenas, D. J.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2001, 40, 4754-4757. (e) Martin-
Matute, B.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem.
Soc. 2003, 125, 5757-5766.
(5) (a) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319-
11320. (b) Dankwardt, J. W. Tetrahedron Lett. 2001, 42, 5809-5812.
(6) (a) Nishizawa, M.; Takenaka, H.; Nishide, H.; Hayashi, Y. Tetra-
hedron Lett. 1983, 24, 2581-2584. (b) Nishizawa, M.; Morikuni, E.; Asoh,
K.; Kan, Y.; Uenoyama, K.; Imagawa, H. Synlett 1995, 169-170. (c)
Nishizawa, M. Studies in Natural Product Chemistry; Rahman, A. u., Ed.;
Elsevier: Amsterdam, Holland, 1988; Vol. 1, Part A. pp 655-676. (d)
(3) Nishizawa, M.; Takao, H.; Yadav, V. K.; Imagawa, H.; Sugihara, T.
Org. Lett. 2003, 5, 4563-4565.
10.1021/ol070335m CCC: $37.00
© 2007 American Chemical Society
Published on Web 02/28/2007