Anal. Chem. 2006, 78, 2405-2412
A Sensitive Method for the Quantification of
Acrolein and Other Volatile Carbonyls in Ambient
Air
Vincent Y. Seaman, M. Judith Charles, and Thomas M. Cahill*
Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, California 95616
Acrolein, an unsaturated aldehyde found in both indoor
and outdoor air, is considered one of the greatest non-
cancer health risks of all organic air pollutants. Current
methods for determining acrolein often employ sorbent-
filled cartridges containing a carbonyl derivatizing agent
to be one of the most dangerous components of toxic air
mixtures,5 acrolein is often omitted from studies of carbonyls
-7
8-18
in the atmosphere
or is reported as “below the limit of
detection”.1
5,19
The current EPA method of determining acrolein (method TO-
11A) is based on the well-documented reaction between carbonyls
and dinitrophenylhydrazine (DNPH), which produces hydrazones
(
e.g., dinitrophenylhydrazine). These methods are of
limited use for unsaturated compounds due to the forma-
tion of unstable derivatives, coelution of similar com-
pounds, long sample collection times, and ozone inter-
ferences that result in poor sensitivity, selectivity, and
reproducibility. The goal of this research was to develop
an analytical method for determining ppt concentrations
of acrolein and other carbonyls in air with short sampling
times (10 min). The method uses a mist chamber to
collect carbonyls by forming water-soluble carbonyl-
bisulfite adducts. The carbonyls are then liberated from
the bisulfite, derivatized, and quantified by gas chroma-
tography/electron capture negative ionization mass spec-
trometry. The method was applied to determine atmo-
spheric acrolein concentrations at three sites in northern
California reflecting hemispheric background concentra-
tions, biogenic-dominated regions, and urban environ-
that are separated by high-pressure liquid chromatography and
detected by UV spectrophotometry (HPLC-UV).2
0-22
While this
method is effective for many aldehydes and ketones, it has not
proven reliable for acrolein and other unsaturated carbonyls.
Numerous problems inherent in the methodology have been
reported, including instability of the DNPH-acrolein hydrazone
during collection and storage2
1,23-28
and poor chromatographic
(
5) U.S. Environmental Protection Agency. Integrated Risk Information System,
Acrolein (CASRN 107-02-8); 2003.
(6) Tam, B. N.; Neumann, C. M. J. Environ. Manage. 2004, 73, 131-145.
(
(
(
7) State of California, A. R. B.; California Air Resources Board: Sacramento,
1997; pp 1997-1911-1912.
8) van Leeuwen, S. M.; Hendriksen, L.; Karst, U. J. Chromatogr., A 2004, 1058,
107-112.
9) Pereira, E. A.; Rezende, M. O. O.; Tavares, M. F. J. Sep. Sci. 2004, 27,
28-32.
(10) Pereira, E. A.; Carrilho, E.; Tavares, M. F. J. Chromatogr., A 2002, 979,
ments. The resulting acrolein concentrations were 0.056,
409-416.
3
(11) Brombacher, S.; Oehme, M.; Dye, C. Anal. Bioanal. Chem. 2002, 372, 622-
29.
12) Pires, M.; Carvalho, L R. F. Anal. Chim. Acta 1998, 367, 223-231.
(13) Grosjean, E.; Grosjean, D. Int. J. Environ. Anal. Chem. 1995, 61, 343-360.
0
.089, and 0.29 µg/m , respectively, which are all above
6
3
the EPA Reference Concentration of 0.02 µg/m . The
minimum detection limit of 0.012 µg/m is below that of
(
3
(14) Shibamoto, Y. A. J. Chromatogr., A 1994, 672, 261-266.
other published methods. Methacrolein, methyl vinyl
ketone, crotonaldehyde, glyoxal, methyl glyoxal, and ben-
zaldehyde were also quantified.
(15) Coutrim, M. X.; Nakamura, L. A.; Collins, C. H. Chromatographia 1993,
3
7, 185-190.
(16) Zhang, J. F.; He, Q. C.; Lioy, P. J. Environ. Sci. Technol. 1994, 28, 146-
52.
1
(
17) Sax, S. N.; Bennett, D. H.; Chillrud, S. N.; Kinney, P. L.; Spengler, J. D. J.
Acrolein, a highly reactive R,â-unsaturated aldehyde, is a
Exposure Anal. Environ.Epidemiol. 2004, 14, S95-S109.
pulmonary toxicant and a common constituent of both indoor and
(18) Bakeas, E. B.; Argyris, D. I.; Siskos, P. A. Chemosphere 2003, 52, 805-
1,2
813.
outdoor air. Acrolein is produced by the incomplete combustion
of organic material as well as the oxidation of atmospheric
chemicals such as 1,3-butadiene, which is a primary component
of motor vehicle exhaust. Indoor sources of acrolein include
heated cooking oil, cigarette smoke, incense, candles, and wood-
burning fireplaces.3 Although considered by regulatory agencies
(
19) Grosjean, E.; Grosjean, D.; Fraser, M. P.; Cass, G. R. Environ. Sci. Technol.
996, 30, 2687-2703.
(20) Lipari, F.; Swarin, S. J. J. Chromatogr. 1982, 247, 297-306.
1
(
(
(
21) Tejada, S. B. Int. J. Environ. Anal. Chem. 1986, 26, 167-185.
22) Grosjean, D. Environ. Sci. Technol. 1982, 16, 254-262.
23) Kieber, R. J. a. K. M. Environ. Sci. Technol. 1990, 24, 1477-1481.
,4
(24) Goelen, E.; Lambrechts, M.; Geyskens, F. Analyst 1997, 122, 411-419.
(
25) Schulte-Ladbeck, R.; Lindahl, R.; Levin, J. O.; Karst, U. J. Environ. Monit.
*
To whom correspondence should be addressed. E-mail: tmcahill@ucdavis.edu.
2001, 3, 306-310.
(
(
1) CICAD. WHO, 2002.
2) U.S. Public Health Service In Agency for Toxic Substances and Disease Registry
(26) Huynh, C. K.; Vu-Duc, T. Anal. Bioanal. Chem. 2002, 372, 654-657.
(27) Dong, J. Z.; Moldoveanu, S. C. J. Chromatogr., A 2004, 1027, 25-35.
(28) Weisel, C. P.; Zhang, J. F.; Turpin, B. J.; Morandi, M. T.; Colome, S.; Stock,
T. H.; Spektor, D. M.; Korn, L.; Winer, A.; Alimokhtari, S.; Kwon, J.; Mohan,
K.; Harrington, R.; Giovanetti, R.; Cui, W.; Afshar, M.; Maberti, S.; Shendell,
D. J. Exposure Anal. Environ. Epidemiol. 2005, 15, 123-137.
(ATSDR); U.S. Public Health Service, USPHS, 1990.
(
(
3) OEHHA. Chronic Toxicity Summary, Acrolein; 2000; Batch 2A.
4) Ghilarducci, D. P.; Tjeerdema, R. S. Rev. Environ. Contam. Toxicol. 1995,
1
44, 95-146.
1
0.1021/ac051947s CCC: $33.50 © 2006 American Chemical Society
Analytical Chemistry, Vol. 78, No. 7, April 1, 2006 2405
Published on Web 02/28/2006