Metabolites in mutant of lankacidin biosynthesis
Z Cao et al
6
ACKNOWLEDGEMENTS
20 Kawachi, R. et al. Identification of an AfsA homologue (BarX) from Streptomyces
virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin
biosynthesis and virginiamycin M1 resistance. Mol. Microbiol. 36, 302–313 (2000).
We thank Professor John C. Vederas (University of Alberta) for a kind gift
of natural pentamycin. We thank Mrs. Tomoko Amimoto (Natural Science
Center for Basic Research and Development, Hiroshima University) for the
measurement of high-resolution mass spectra. This work was supported by a
Grants-in-Aid for Scientific Research on Innovative Areas from the Ministry of
Education, Culture, Sports, Science and Technology of Japan (MEXT), and a
Charitable Trust Araki Medical and Biochemical Research Memorial Fund.
2
2
2
2
1 Ishikawa, J., Niino, Y. & Hotta, K. Construction of pRES18 and pRES19, Streptomyces-
Escherichia coli shuttle vectors carrying multiple cloning sites. FEMS Microbiol. Lett.
145, 113–116 (1996).
2 Olano, C., Lombó, F., Méndez, C. & Salas, J. A. Improving production of bioactive
secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 10,
2
81–292 (2008).
3 Sun, Y. et al. 'Streptomyces nanchangensis', a producer of the insecticidal polyether
antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains
multiple polyketide gene clusters. Microbiology 148, 361–371 (2002).
4 Komatsu, M. et al. Engineered Streptomyces avermitilis host for heterologous expres-
sion of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 19,
384–396 (2013).
1
2
Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic
diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).
Kinashi, H., Mori, E., Hatani, A. & Nimi, O. Isolation and characterization of large
25 Aharonowitz, Y., Cohen, G. & Martin, J. F. Penicillin and cephalosporin biosynthetic
genes: Structure, organization, regulation, and evolution. Annu. Rev. Microbiol. 46,
461–495 (1992).
linear plasmids from lankacidin-producing Streptomyces species. J. Antibiot. 47,
1
447–1455 (1994).
26 Yang, Y. et al. pSLA2-M of Streptomyces rochei is a composite linear plasmid
characterized by self-defense genes and homology with pSLA2-L. Biosci. Biotechnol.
Biochem. 75, 1147–1153 (2011).
27 Tytell, A. A., McCarthy, F. J., Fisher, W. P., Bolhofer, W. A. & Charney, J. Fungichromin
and fungichromatin: new polyene antifungal agents. Antibiot. Annu.
716–718 (1954–1955).
3
4
Auerbach, T. et al. The structure of ribosome-lankacidin complex reveals ribosomal sites
for synergistic antibiotics. Proc. Natl Acad. Sci. USA 107, 1983–1988 (2010).
Belousoff, M. J. et al. Crystal structure of the synergistic antibiotic pair, lankamycin and
lankacidin, in complex with the large ribosomal subunit. Proc. Natl Acad. Sci. USA
1
08, 2717–2722 (2011).
5
Arakawa, K., Tsuda, N., Taniguchi, A. & Kinashi, H. The butenolide signaling molecules
SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei.
ChemBioChem. 13, 1447–1457 (2012).
Harada, S., Higashide, E., Fugono, T. & Kishi, T. Isolation and structures of T-2636
antibiotics. Tetrahedron Lett. 10, 2239–2244 (1969).
Mochizuki, S. et al. The large linear plasmid pSLA2-L of Streptomyces rochei has an
unusually condensed gene organization for secondary metabolism. Mol. Microbiol. 48,
28 Oishi, T. Studies directed towards the stereoselective synthesis of polyene macrolide
antibiotics. Pure Appl. Chem. 61, 427–430 (1989).
29 Matsumoto, K., Shimagaki, M., Nakata, T. & Oishi, T. Synthesis of acyclic polyol
derivatives via enzyme-mediated aldol reaction. Tetrahedron Lett. 34,
4935–4938 (1993).
30 Harada, S., Kishi, T. & Mizuno, K. Studies on T-2636 antibiotics. II. Isolation and
chemical properties of T-2636 antibiotics. J. Antibiot. 24, 13–22 (1971).
31 Wachtler, V. & Balasubramanian, M. K. Yeast lipid rafts? -an emerging view. Trends Cell
Biol. 16, 1–4 (2006).
32 Butler, J. D. et al. Niemann-pick variant disorders: comparison of errors of cellular
cholesterol homeostasis in group D and group C fibroblasts. Proc. Natl Acad. Sci. USA
84, 556–560 (1987).
33 Xu, L. H. et al. Regio- and stereospecificity of filipin hydroxylation sites revealed by
crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces
avermitilis. J. Biol. Chem. 285, 16844–16853 (2010).
34 Ikeda, H., Shin-ya, K. & Omura, S. Genome mining of the Streptomyces avermitilis
genome and development of genome-minimized hosts for heterologous expression of
biosynthetic gene clusters. J. Ind. Microbiol. Biotechnol. 41, 233–250 (2014).
35 Arakawa, K., Mochizuki, S., Yamada, K., Noma, T. & Kinashi, H. γ-Butyrolactone
autoregulator-receptor system involved in lankacidin and lankamycin production
and morphological differentiation in Streptomyces rochei. Microbiology 153,
1817–1827 (2007).
36 Yamamoto, S., He, Y., Arakawa, K. & Kinashi, H. γ-Butyrolactone-dependent expression
of the SARP gene srrY plays a central role in the regulatory cascade leading to
lankacidin and lankamycin production in Streptomyces rochei. J. Bacteriol. 190,
1308–1316 (2008).
37 Suzuki, T., Mochizuki, S., Yamamoto, S., Arakawa, K. & Kinashi, H. Regulation of
lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ.
Biosci. Biotechnol. Biochem. 74, 819–827 (2010).
6
7
1
501–1510 (2003).
8
9
1
Arakawa, K., Sugino, F., Kodama, K., Ishii, T. & Kinashi, H. Cyclization mechanism for
the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei. Chem. Biol.
1
2, 249–256 (2005).
Tatsuno, S., Arakawa, K. & Kinashi, H. Analysis of modular-iterative mixed biosynthesis
of lankacidin by heterologous expression and gene fusion. J. Antibiot. 60,
7
00–708 (2007).
0 Tatsuno, S., Arakawa, K. & Kinashi, H. Extensive mutational analysis of modular-
iterative mixed polyketide biosynthesis of lankacidin in Streptomyces rochei. Biosci.
Biotechnol. Biochem. 73, 2712–2719 (2009).
1 Dickschat, J. S. et al. An additional dehydratase-like activity is required for lankacidin
antibiotic biosynthesis. ChemBioChem 12, 2408–2412 (2011).
1
1
1
2 Shizuri, Y., Nishiyama, S., Imai, D. & Yamamura, S. Isolation and stereostructures of
citreoviral, citreodiol, and epicitreodiol. Tetrahedron Lett. 25, 4771–4774 (1984).
3 Ghosh, P., Cusick, J. R., Inghrim, J. & Williams, L. J. Silyl-substituted spirodiepoxides:
stereoselective formation and regioselective opening. Org. Lett. 11,
4672–4675 (2009).
1
1
4 Giovannini, P. P., Fantin, G., Massi, A., Venturi, E. & Pedrini, P. Enzymatic diastereo-
and enantioselective synthesis of α-alkyl-α,β-dihydroxyketones. Org. Biomol. Chem. 9,
8038–8045 (2011).
5 Whitfield, G. B., Brock, T. D., Ammann, A., Gottlieb, D. & Carter, H. E. Filipin,
an antifungal antibiotic: Isomation and properties. J. Am. Chem. Soc. 77,
4
799–4801 (1955).
38 Takano, E. et al. A bacterial hormone (the SCB1) directly controls the expression of a
pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene
cluster of Streptomyces coelicolor. Mol. Microbiol. 56, 465–479 (2005).
39 O'Rourke, S. et al. Extracellular signalling, translational control, two repressors and an
activator all contribute to the regulation of methylenomycin production in Streptomyces
coelicolor. Mol. Microbiol. 71, 763–778 (2009).
40 Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical
Streptomyces genetics (The John Innes Foundation: Norwich, UK, 2000).
41 Zhang, H., Shinkawa, H., Ishikawa, J., Kinashi, H. & Nimi, O. Improvement of
1
1
1
6 Umezawa, S., Tanaka, Y., Ooka, M. & Shiotsu, S. A new antifungal antibiotic,
pentamycin. J. Antibiot. 11, 26–29 (1958).
7 Noguchi, H. et al. Biosynthesis and full NMR assignment of fungichromin, a polyene
antibiotic from Streptomyces cellulose. J. Am. Chem. Soc. 110, 2938–2945 (1988).
8 Li, Z., Rawlings, B. J., Harrison, P. H. & Vederas, J. C. Production of new polyene
antibiotics by Streptomyces cellulosae after addition of ethyl (Z)-16-phenylhexadec-9-
enoate. J. Antibiot. 42, 577–584 (1989).
9 Ohnishi, Y., Kameyama, S., Onaka, H. & Horinouchi, S. The A-factor regulatory cascade
leading to streptomycin production in Streptomyces griseus: identification of a target
gene of the A-factor receptor. Mol. Microbiol. 34, 102–111 (1999).
1
transformation system in Streptomyces using
J. Ferment. Bioeng. 83, 217–221 (1997).
a modified regeneration medium.
Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)
The Journal of Antibiotics