1569-02-4Relevant articles and documents
Hydrogen bonding-catalysed alcoholysis of propylene oxide at room temperature
Li, Ruipeng,Liu, Zhimin,Wang, Yuepeng,Xiang, Junfeng,Xu, Yueting,Zhang, Fengtao,Zhao, Yanfei
supporting information, p. 8734 - 8737 (2021/09/08)
Alcoholysis of propylene oxide (PO) is achieved over azolate ionic liquids (IL,e.g., 1-hydroxyethyl-3-methyl imidazolium imidazolate) at room temperature, accessing glycol ethers in high yields with excellent selectivity (e.g., >99%). Mechanism investigation indicates that cooperation of hydrogen-bonding of the anion with methanol and that of the cation with PO catalyses the reaction.
PROCESS FOR MAKING FORMIC ACID UTILIZING LOWER-BOILING FORMATE ESTERS
-
Paragraph 00177; 00178, (2019/02/15)
Disclosed is a process for recovering formic acid from a formate ester of a C3 to C4 alcohol. Disclosed is also a process for producing formic acid by carbonylating a C3 to C4 alcohol, hydrolyzing the formate ester of the alcohol, and recovering a formic acid product. The alcohol may be dried and returned to the reactor. The process enables a more energy efficient production of formic acid than the carbonylation of methanol to produce methyl formate.
Nano metal oxides as efficient catalysts for selective synthesis of 1-methoxy-2-propanol from methanol and propylene oxide
Zhang, Jiawei,Cai, Qinghai,Zhao, Jingxiang,Zang, Shuying
, p. 4478 - 4482 (2018/02/07)
Nano metal oxides such as Fe2O3, Fe3O4, CuO, NiO, ZnO and SnO2 were prepared and characterized using XRD, SEM and TEM analysis. These as-prepared metal oxide materials were used as catalysts for the etherification of methanol with propylene oxide (PO). The results showed that α-Fe2O3 exhibited outstanding catalytic performance with 97.7% conversion and 83.0% selectivity to MP-2 at 160 °C for 8 h. Furthermore, the relationship between the catalytic activity or selectivity and surface basicity or energy gap was investigated. This catalyst could be easily recovered and reused due to its heterogeneous catalytic nature.
Application of ionic liquid in synthesis of propylene glycol ether and synthetic method of propylene glycol ether
-
Paragraph 0065; 0066; 0081; 0082, (2018/03/01)
The invention relates to the technical field of chemical engineering catalysis and provides application of ionic liquid in synthesis of propylene glycol ether and a synthetic method of propylene glycol ether. The ionic liquid is methyl carbonate ionic liquid and is taken as a catalyst for catalyzed synthesis of propylene glycol ether. The synthetic method of propylene glycol ether comprises the steps of adding epoxy propane and alcohol into a reactor to be in contact with the catalyst, and heating to 50-200 DEG C in a closed environment, so as to obtain propylene glycol ether, wherein the catalyst is the methyl carbonate ionic liquid. The synthetic method of propylene glycol ether is an environment-friendly synthetic process, has no special requirements on production equipment and is beneficial to industrial production and application, and the process is simple and easy to control.
Synthesis of propylene glycol ethers from propylene oxide catalyzed by environmentally friendly ionic liquids
Zhao, Cong,Chen, Shengxin,Zhang, Ruirui,Li, Zihang,Liu, Ruixia,Ren, Baozeng,Zhang, Suojiang
, p. 879 - 888 (2017/05/24)
A series of acetate ionic liquids were synthesized using a typical two-step method. The ionic liquids were used as environmentally benign catalysts in the production of propylene glycol ethers from propylene oxide and alcohols under mild conditions. The basic strengths of the ionic liquids were evaluated by determination of their Hammett functions, obtained using ultraviolet-visible spectroscopy, and the relationship between their catalytic activities and basicities was established. The catalytic efficiencies of the ionic liquids were higher than that of the traditional basic catalyst NaOH. This can be attributed to the involvement of a novel reaction mechanism when these ionic liquids are used. A possible electrophilic-nucleophilic dual activation mechanism was proposed and confirmed using electrospray ionization quadrupole time-of-flight mass spectrometry. In addition, the effects of significant reaction parameters such as concentration of catalyst, molar ratio of alcohol to propylene oxide, reaction temperature, and steric hindrance of the alcohol were investigated in detail.
Epoxide hydrolysis and alcoholysis reactions over crystalline Mo-V-O oxide
Zhang, Xiaochen,Wang, Min,Zhang, Chaofeng,Lu, Jianmin,Wang, Yehong,Wang, Feng
, p. 70842 - 70847 (2016/08/05)
Crystalline Mo-V-O oxides have been used as a catalyst for the hydrolysis and alcoholysis of propylene oxide to diols and ethers, respectively. Relationships between the active crystal facet, the acidity of Mo-V-O catalysts and the activity have been established. Our results indicate that the a-b plane is the active facet for the hydrolysis reaction.
An atom-economic reaction for synthesis of 1-phenoxy-2-propanol over Al2O3/MgO
Zhang, Yongbo,Lu, Bin,Wang, Xiaoguang,Zhao, Jingxiang,Cai, Qinghai
experimental part, p. 125 - 129 (2012/05/04)
Al2O3/MgO materials with various Mg/Al molar ratios were prepared and characterized by XRD, FT-IR, SEM and BET analysis. These materials were used as catalysts for synthesis of 1-phenoxy-2-propanol (1-PhP) from phenol and propylene oxide as compared with some oxides, i.e. MgO, CaO, ZnO and Al2O3, etc. Al2O3/MgO with Al/Mg molar ratio of 1.5% exhibited outstanding catalytic performance with 98.2% conversion and 99.3% selectivity to 1-PhP at 120 °C for 5 h. This catalyst can be easily recovered and reused due to its heterogeneous catalytic nature.
Tunable synthesis of propylene glycol ether from methanol and propylene oxide under ambient pressure
Bai, Yu,Cai, Qinghai,Wang, Xiaoguang,Lu, Bin
experimental part, p. 386 - 390 (2011/08/04)
A series of basic and acidic ionic liquids, 1-butyl-3-methylimidazolium hydroxide (BMIMOH), 1-acetyl-3-methylimidazolium chloride (AcMIMCl) and AcMIMCl-FeCl3, or analogues of AcMIMCl, namely 1-potassium acetate-3-methylimidazolium chloride (KAcMIMCl), 1-potassium (sodium, ammonium) acetate-3-methylimidazolium hydroxides (KAcMIMOH, NaAcMIMOH and NH 4AcMIMOH), were prepared and used as catalysts for catalytic synthesis of propylene glycol ether via reaction of propylene oxide (PO) with methanol under mild reaction conditions. KAcMIMOH exhibited outstanding catalytic performance with 94.2% of conversion of PO and 99.1% of selectivity to 1-methoxy-2-propanol (MP-2) at 60°C and ambient pressure for 4 h. However, AcMIMCl-FeCl3 showed a good catalysis performance with high selectivity to 2-methoxy-1-propanol (MP-1). The tunable synthesis of MP-2 or MP-1 catalyzed by basic compound KAcMIMOH or acidic ionic liquid AcMIMCl-FeCl3 was realized.
PROCESS FOR PREPARING AN ALKOXYLATED ALCOHOL OR PHENOL
-
Page/Page column 19, (2008/06/13)
Process for preparing an alkoxylated alcohol comprising reacting a starting monohydroxy alcohol selected from secondary alcohols, tertiary alcohols and mixtures thereof with an alkylene oxide in the presence of hydrogen fluoride and a boron-containing compound comprising at least one B-O bond. The alcohol may also be a primary monohydroxy alcohol when the boron containing compound is boric acid or boric acid anhydride or a mixture thereof, or may be a primary mono hydroxy alcohol, except a C14/C15 alcohol when reacted with ethylene oxide in the presence of HF and trimethyl borate. A phenol may be alkoxylated in the same way instead of the mono-hydroxyalcohol.
The Use of Proton-exchanged X-Type Zeolite in Catalysing Ring-opening Reactions of 2-Substituted Epoxides with Nucleophiles and its Effect on Regioselectivity
Takeuchi, Hiroshi,Kitajima, Kunio,Yamamoto, Yasuhiro,Mizuno, Kiyokazu
, p. 199 - 203 (2007/10/02)
The use of proton-exchanged X-type zeolite in catalysing ring-opening reactions of 2-alkyl substituted epoxides with nucleophiles gives a high regioselectivity and functional-selective catalysis giving allylic products from allylic nucleophiles.Mechanistic aspects are discussed.