Welcome to LookChem.com Sign In|Join Free

CAS

  • or

35673-97-3

Post Buying Request

35673-97-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

35673-97-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 35673-97-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,6,7 and 3 respectively; the second part has 2 digits, 9 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 35673-97:
(7*3)+(6*5)+(5*6)+(4*7)+(3*3)+(2*9)+(1*7)=143
143 % 10 = 3
So 35673-97-3 is a valid CAS Registry Number.

35673-97-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name D-fructofuranose

1.2 Other means of identification

Product number -
Other names D-fructose

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35673-97-3 SDS

35673-97-3Relevant articles and documents

Two-step biosynthesis of D-allulose via a multienzyme cascade for the bioconversion of fruit juices

Li, Chao,Li, Lei,Feng, Zhiyuan,Guan, Lijun,Lu, Fuping,Qin, Hui-Min

, (2021/04/27)

D-Allulose, a low-calorie rare sugar with potential as sucrose substitute for diabetics, can be produced using D-allulose 3-epimerase (DAE). Here, we characterized a putative thermostable DAE from Pirellula sp. SH-Sr6A (PsDAE), with a half-life of 6 h at 60 °C. Bioconversion of 500 g/L D-fructose using immobilized PsDAE on epoxy support yielded 152.7 g/L D-allulose, which maintained 80% of the initial activity after 11 reuse cycles. A multienzyme cascade system was developed to convert sucrose to D-allulose comprising sucrose invertase, D-glucose isomerase and PsDAE. Fruit juices were treated using this system to convert the high-calorie sugars, such as sucrose, D-glucose, and D-fructose, into D-allulose. The content of D-allulose among total monosaccharides in the treated fruit juice remained between 16 and 19% during 15 reaction cycles. This study provides an efficient strategy for the development of functional fruit juices containing D-allulose for diabetics and other special consumer categories.

Hydrogenation of crude and purified d-glucosone generated by enzymatic oxidation of d-glucose

Aho, Atte,Lassfolk, Robert,Leino, Reko,Murzin, Dmitry Yu.

, p. 30476 - 30480 (2020/09/11)

D-Fructose is an important starting material for producing furfurals and other industrially important chemicals. While the base-catalyzed and enzymatic conversion of d-glucose to d-fructose is well known, the employed methods typically provide limited conversion. d-Glucosone can be obtained from d-glucose by enzymatic oxidation at the C2 position and, subsequently, selectively hydrogenated at C1 to form d-fructose. This work describes an investigation on the hydrogenation of d-glucosone, using both chromatographically purified and crude material obtained directly from the enzymatic oxidation, subjected to filtration and lyophilization only. High selectivities towards d-fructose were observed for both starting materials over a Ru/C catalyst. Hydrogenation of the crude d-glucosone was, however, inhibited by the impurities resulting from the enzymatic oxidation process. Catalyst deactivation was observed in the case of both starting materials.

One-pot sol-gel synthesis of a phosphated TiO2 catalyst for conversion of monosaccharide, disaccharides, and polysaccharides to 5-hydroxymethylfurfural

Rao, Kasanneni Tirumala Venkateswara,Souzanchi, Sadra,Yuan, Zhongshun,Xu, Chunbao

supporting information, p. 12483 - 12493 (2019/08/12)

Catalytic conversion of biomass or biomass-derived carbohydrates into 5-hydroxymethylfurfural (HMF) is an important reaction for the synthesis of bio-based polymers, fuels, and other industrially useful products. In this study, phosphated titania (P-TiO2) catalysts with different phosphoric acid content were prepared through a simple one-pot sol-gel method and characterized by BET, XRD, FT-IR, NH3-TPD, py-FT-IR, and XPS techniques. The catalyst characterization results revealed the incorporation of phosphorus into the TiO2 framework in the form of a Ti-O-P bond. The P-TiO2 catalysts were applied to the conversion of glucose (≥10 wt%) into HMF in a biphasic water/THF reaction medium at 175 °C. Under optimized reaction conditions, 98% glucose conversion and 53% HMF yield were obtained over a 15P-TiO2 catalyst, and the catalyst was reused for several cycles with consistent activity and selectivity. The presence of both Br?nsted and Lewis acid sites, high BET surface area and pore volume, and high acidity could account for the high catalytic activity and selectivity. Besides, the 15P-TiO2 catalyst was also demonstrated to be active for the conversion of disaccharides (sucrose and cellobiose), polysaccharides (starch and microcrystalline cellulose) and industrial grade sugar syrups into HMF with reasonable yield.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35673-97-3