Welcome to LookChem.com Sign In|Join Free

CAS

  • or

551-93-9

Post Buying Request

551-93-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

551-93-9 Usage

Chemical Properties

2?-Aminoacetophenone has a grape-like odor. Aminoacetophenone is a pheromone produced by virgin honeybee queens and released in feces. The pheromone repels and is used to terminate agonistic interactions between queens and workers. A grape-like odor of 2?-aminoacetophenone is of diagnostic importance in detecting the growth of Pseudomonas aeruginosa in culture and in burn wounds.

Occurrence

Reported present in chestnut honey (>154 ppb)*; green tea? and wine (0.7 to 12.8 μg/L).

Uses

2′-Aminoacetophenone may be used as an analytical standard for the determination of the analyte in livestock particulate matter, and grape-derived beverages by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and GC-MS, respectively.

Definition

ChEBI: An aromatic ketone that is acetophenone in which one of the ortho hydrogens of the phenyl group has been replaced by an amino group.

Synthesis Reference(s)

Journal of the American Chemical Society, 76, p. 4561, 1954 DOI: 10.1021/ja01647a016Journal of Heterocyclic Chemistry, 24, p. 297, 1987 DOI: 10.1002/jhet.5570240201Journal of the American Chemical Society, 105, p. 943, 1983 DOI: 10.1021/ja00342a050The Journal of Organic Chemistry, 45, p. 4926, 1980 DOI: 10.1021/jo01312a021The Journal of Organic Chemistry, 22, p. 358, 1957 DOI: 10.1021/jo01355a002

General Description

2′-Aminoacetophenone is one of the key volatile flavor components of masa corn flour products.{9] It is also reported to be responsible for the grape-like odor in culture media growing Pseudomonas aeruginosa.

Check Digit Verification of cas no

The CAS Registry Mumber 551-93-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,5 and 1 respectively; the second part has 2 digits, 9 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 551-93:
(5*5)+(4*5)+(3*1)+(2*9)+(1*3)=69
69 % 10 = 9
So 551-93-9 is a valid CAS Registry Number.
InChI:InChI=1/C8H9NO/c9-6-8(10)7-4-2-1-3-5-7/h1-5H,6,9H2

551-93-9 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A10895)  2'-Aminoacetophenone, 98%   

  • 551-93-9

  • 5g

  • 196.0CNY

  • Detail
  • Alfa Aesar

  • (A10895)  2'-Aminoacetophenone, 98%   

  • 551-93-9

  • 10g

  • 290.0CNY

  • Detail
  • Alfa Aesar

  • (A10895)  2'-Aminoacetophenone, 98%   

  • 551-93-9

  • 50g

  • 1306.0CNY

  • Detail
  • Alfa Aesar

  • (A10895)  2'-Aminoacetophenone, 98%   

  • 551-93-9

  • 250g

  • 5231.0CNY

  • Detail

551-93-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Aminoacetophenone

1.2 Other means of identification

Product number -
Other names 2-Acetylaniline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:551-93-9 SDS

551-93-9Relevant articles and documents

Photoinduced Reduction of Nitroarenes Using a Transition-Metal-Loaded Silicon Semiconductor under Visible Light Irradiation

Tsutsumi, Ken,Uchikawa, Fumito,Sakai, Kentaro,Tabata, Kenji

, p. 4394 - 4398 (2016)

We investigated transition-metal-loaded silicon nanoparticles for the photocatalytic reduction of nitroarene derivatives in the presence of formic acid under visible light irradiation. Formic acid assumes the role of both a hydrogen source and a sacrificial reagent for the introduction of electrons into the generated holes of semiconductors. As such, in the presence of formic acid, photocatalytic reactions smoothly proceed under mild conditions without gaseous hydrogen. In particular, palladium-loaded silicon (Pd/Si) was the most suitable catalyst for the conversion of nitrobenzene to aniline, compared to Pt/Si, Ru/Si, and Pd/C.

Isolation of o-acetylbenzene-amidinocarboxylic acid, a new metabolite of Gibberella saubinetii

Munekata,Seto,Tamura

, p. 1711 - 1713 (1982)

-

Catalytic Synthesis of 3-Substituted Indoles using CO as Building Block and Supported Rhodium as Catalyst

Ucciani, Eugene,Bonfand, Andre

, p. 82 - 83 (1981)

Under hydroformylation conditions, using supported rhodium as catalyst, 2-nitrostyrene is directly converted into skatole in ca. 70percent yield, by a reaction involving formation of 2-(o-nitrophenyl)propionaldehyde by homogeneous catalysis, reduction of the nitro-group by heterogeneous catalysis, then ring closure and thermal dehydration.

High catalytic activity of a bimetallic AgPd alloy supported on UiO-66 derived porous carbon for transfer hydrogenation of nitroarenes using formic acid-formate as the hydrogen source

Cheng, Saisai,Shang, Ningzhao,Zhou, Xin,Feng, Cheng,Gao, Shutao,Wang, Chun,Wang, Zhi

, p. 9857 - 9865 (2017)

Bimetallic AgPd nanoparticles anchored on metal-organic framework (UiO-66) derived N-doped porous carbon (NPC-UiO-66) was fabricated and used as a catalyst for the catalytic transfer hydrogenation of nitroarenes using formic acid-formate as the hydrogen source. The results demonstrated that the Ag1Pd9@NPC-UiO-66 composite exhibited extraordinary catalytic activity toward the hydrogenation of nitroarenes to anilines at room temperature. A series of substituted nitroarenes were successfully converted to the corresponding anilines in high yields under ambient conditions with other reducible groups remaining intact. The superior catalytic performance of the prepared catalyst can be attributed to the synergistic effect between the highly dispersed AgPd nanoparticles and the unique structure of the NPC-UiO-66 support, as well as the high adsorption ability of the catalyst for the nitroarenes.

Palladium(II)-mediated oxidative cyclization of N-carbamoyl aminoalkynes: A new route to γ-lactams

Doan, Huynh Dong,Gore, Jacques,Vatele, Jean-Michel

, p. 6765 - 6768 (1999)

Transformation of N-carbamoyl or acetyl-4-trimethylsilyl-3-alkyn-1-amines to diversely substituted 2-pyrrolidinones, via a Wacker-type reaction, is described.

Intercalating ultrathin polymer interim layer for charge transfer cascade towards solar-powered selective organic transformation

Fu, Xiao-Yan,Hou, Shuo,Lin, Hua-Jian,Lin, Xin,Mo, Qiao-Ling,Wei, Zhi-Quan,Xiao, Fang-Xing,Xu, Shuai

, p. 150 - 161 (2021)

Transition metal chalcogenide quantum dots (TMCs QDs) constitute a crucial sector of semiconductors on account of large absorption coefficient for light harvesting, peculiar quantum confinement effect, and abundant active sites stemming from ultra-small size. However, elaborate and tunable modulation of anisotropic photoinduced charge carriers over TMCs QDs represents an enduring challenge in terms of sluggish charge transfer kinetic and ultra-short charge lifetime compared with nanoparticulate counterparts, thereby rendering maneuvering charge transfer of TMCs QDs a tough issue. We herein conceptually unlock the unanticipated charge transport capability of solid-state non-conductive poly(diallyl dimethylammonium chloride) (PDDA) for constructing cascade charge transfer pathway over self-assembled wide bandgap semiconductors (WBS)/PDDA/TMCs QDs multilayered heterostructures, by which unidirectional and accelerated electron transfer from TMCs QDs to WBS support mediums was spontaneously activated, markedly boosting the charge separation/migration efficiency. The integrated roles of such ultrathin insulating PDDA intermediate layer as simultaneous surface charge modifying agent and interfacial charge transfer mediator have been evidenced to be universal. The unexpected electron-withdrawing capability of ultrathin PDDA layer endows WBS (SnO2, TiO2)@PDDA@TMCs (CdSe, CdS) QDs heterostructures with significantly enhanced net efficiency of photoactivities toward selective anaerobic reduction of nitroaromatics to amino derivatives under visible light irradiation. Our work would feature a promising scope for rational design of multifarious novel insulating polymers-based photosystems for solar energy conversion.

Hollow Nano-Mesosilica Spheres Containing Rhodium Nanoparticles Supported on Nitrogen-Doped Carbon: An Efficient Catalyst for the Reduction of Nitroarenes under Mild Conditions

Wang, Shihan,Dai, Jinyu,Shi, Zhiqiang,Xiong, Zeshan,Zhang, Zongtao,Qiu, Shilun,Wang, Runwei

, p. 247 - 253 (2020)

Atom efficiency, low temperature, low pressure, and a nontoxic hydrogen source as a reducing agent are ideal reaction conditions for the reduction of nitroarenes. In this work, an efficient catalyst comprising hollow nano-mesosilica spheres loaded with Rh nanoparticles supported on nitrogen-doped carbon was developed. Rh nanoparticles were stabilized and uniformly dispersed by nitrogen atoms, and the inner N-doped carbon shell was used to adsorb reaction substrates and improve catalytic activity. The catalyst showed remarkable activity (maximum yield at 1.5 h) and selectivity (100 %) for the reduction of nitrobenzene at lower temperature (80 °C), atmospheric pressure (1 atm), and without base under aqueous conditions. Moreover, the hydrothermal stability of this nanocatalyst was better than other catalysts in boiling water at 100 °C for 48 h and effectively prevented the aggregation and leaching of Rh NPs during the reaction.

Cobalt nanoclusters coated with N-doped carbon for chemoselective nitroarene hydrogenation and tandem reactions in water

Agostini, Giovanni,Calvino, Jose. J.,Corma, Avelino,Gutiérrez-Tarri?o, Silvia,Lopes, Christian W.,O?a-Burgos, Pascual,Rojas-Buzo, Sergio

supporting information, p. 4490 - 4501 (2021/06/28)

The development of active and selective non-noble metal-based catalysts for the chemoselective reduction of nitro compounds in aquo media under mild conditions is an attractive research area. Herein, the synthesis of subnanometric and stable cobalt nanoclusters, covered by N-doped carbon layers as core-shell (Co@NC-800), for the chemoselective reduction of nitroarenes is reported. TheCo@NC-800catalyst was prepared by the pyrolysis of the Co(tpy)2complex impregnated on Vulcan carbon. In fact, the use of a molecular complex based on six N-Co bonds drives the formation of a well-defined and distributed cobalt core-shell nanocluster covered by N-doped carbon layers. In order to elucidate its nature, it has been fully characterized by using several advanced techniques. In addition, this as-prepared catalyst showed high activity, chemoselectivity and stability toward the reduction of nitro compounds with H2and under mild reaction conditions; water was used as a green solvent, improving the previous results based on cobalt catalysts. Moreover, theCo@NC-800catalyst is also active and selective for the one-pot synthesis of secondary aryl amines and isoindolinones through the reductive amination of nitroarenes. Finally, based on diffraction and spectroscopic studies, metallic cobalt nanoclusters with surface CoNxpatches have been proposed as the active phase in theCo@NC-800material.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 551-93-9