613-92-3Relevant articles and documents
Functional characterization of protein variants encoded by nonsynonymous single nucleotide polymorphisms in MARC1 and MARC2 in healthy Caucasians
Ott, Gudrun,Reichmann, Debora,Boerger, Cornelia,Cascorbi, Ingolf,Bittner, Florian,Mendel, Ralf-Rainer,Kunze, Thomas,Clement, Bernd,Havemeyer, Antje
, p. 718 - 725 (2014)
Human molybdenum-containing enzyme mitochondrial amidoxime reducing component (mARC), cytochrome b5 type B, and NADH cytochrome b5 reductase form an N-reductive enzyme system that is capable of reducing N-hydroxylated compounds. Genetic variations are known, but their functional relevance is unclear. Our study aimed to investigate the incidence of nonsynonymous single nucleotide polymorphisms (SNPs) in the mARC genes in healthy Caucasian volunteers, to determine saturation of the protein variants with molybdenum cofactor (Moco), and to characterize the kinetic behavior of the protein variants by in vitro biotransformation studies. Genotype frequencies of six SNPs in the mARC genes (c. 493A>G, c. 560T>A, c. 736T>A, and c. 739G>C in MARC1; c. 730G>A and c. 735T>G in MARC2) were determined by pyrosequencing in a cohort of 340 healthy Caucasians. Protein variants were expressed in Escherichia coli. Saturation with Moco was determined by measurement of molybdenum by inductively coupled mass spectrometry. Steady state assays were performed with benzamidoxime. The six variants were of low frequency in this Caucasian population. Only one homozygous variant (c.493A; MARC1) was detected. All protein variants were able to bind Moco. Steady state assays showed statistically significant decreases of catalytic efficiency values for the mARC-2 wild type compared with the mARC-1 wild type (P 0.05) and for two mARC-2 variants compared with the mARC-2 wild type (G244S, P 0.05; C245W, P 0.05). After simultaneous substitution of more than two amino acids in the mARC-1 protein, N-reductive activity was decreased 5-fold. One homozygous variant of MARC1 was detected in our sample. The encoded protein variant (A165T) showed no different kinetic parameters in the N-reduction of benzamidoxime. Copyright
Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity
Abdelhamid, Antar A.,Gomaa, Hesham A. M.,Gouda, Ahmed M.,Kamal, Islam,Marzouk, Adel A.,Moustafa, Amr H.,Youssif, Bahaa G. M.
, (2021/12/30)
Recent studies have shown that combining kinase inhibitors has additive and synergistic effects. BRAFV600E and p38α have been extensively studied as potential therapeutic targets for a variety of diseases. In keeping with our interest in developing multi-targeted anticancer agents, a series of novel triaryl-imidazole-based analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4a-h, Scaffold B) and their reaction intermediates aryl carboximidamides moiety (3a-h, Scaffold A) have been rationally designed, synthesized, and evaluated in vitro for their antiproliferative activity as dual p38α/BRAFV600E inhibitors. The results revealed that the presence of the carboximidamide moiety is required for activity, and the best activity correlates with the Ar = 1,2-benzodioxole (3e) ≥ 4-CH3O-C6H5-(3c) > 2-naphthyl (3h) > 4-Cl-C6H5 (3b). Ring closure of carboximidamide to 1,2,4-oxadiazole significantly reduces the activity. The results of docking study into p38α revealed higher binding affinities for compounds 3c, 3e, and 3h compared to the co-crystallized ligand, SB2. However, the docking study of compounds 3c and 3e into BRAFV600E revealed slightly lower affinities than vemurafenib.
2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features
Baykov, S. V.,Kotlyarova, V. D.,Shetnev, A. A.,Tarasenko, M. V.
, p. 768 - 778 (2021/06/26)
Abstract: An efficient one-pot method was developed for the synthesis of 2-(1,2,4-oxadiazol-5-yl)anilines via the reaction of amidoximes with isatoic anhydrides in a NaOH–DMSO medium at ambient temperature. The method allows to obtain structurally diverse
Cobalt-Catalyzed, Directed Intermolecular C-H Bond Functionalization for Multiheteroatom Heterocycle Synthesis: The Case of Benzotriazine
Wu, Weiping,Fan, Shuaixin,Li, Tielei,Fang, Lili,Chu, Benfa,Zhu, Jin
supporting information, p. 5652 - 5657 (2021/08/01)
Transition-metal-catalyzed, directed intermolecular C-H bond functionalization is synthetically useful but heavily underexplored in multiheteroatom heterocycle synthesis. Herein we report a cobalt catalytic method for the formation of a three-nitrogen-bearing benzotriazine scaffold via the coupling of arylhydrazine and oxadiazolone. This synthetic protocol features a low-cost base metal catalyst, a maximum number of heteroatoms built into a heterocycle, a distinct synthetic logic for benzotriazines, a superior step economy, and a broad substrate scope.