2131-55-7Relevant articles and documents
Microwave mediated synthesis of 2-aminooxazoles
Cronin, Adam,Eagon, Scott,Gleason, Cameron,Johnson, Hunter,Kimball, Joshua J.,Klug, Trevan,Lazaro, Horacio,Liyanage, Duminda,Manjunath, Aashrita,O'Brien, Eli,Schioldager, Ryan,Schmid, Connor,Soderberg, Nathan
supporting information, (2021/12/14)
A microwave mediated synthesis of 2-aminooxazoles at 150 °C was developed, providing products with a variety of functional groups. The reaction takes 5 min and provides product with a simple precipitation at moderate to good yields without the need for recrystallization or flash chromatography.
COMPOUNDS WITH COPPER- OR ZINC-ACTIVATED TOXICITY AGAINST MICROBIAL INFECTION
-
, (2022/02/05)
Heterocyclic compounds with a novel pyrazole thioamide-based NNSN structural motif, having highly effective zinc- or copper-activated toxicity against microbial infections at micromolar or nanomolar minimum inhibitory concentrations (MIC), and methods of making and using same.
Discovery of quinazoline derivatives as a novel class of potent and in vivo efficacious LSD1 inhibitors by drug repurposing
Li, Zhonghua,Li, Zhongrui,Ma, Jinlian,Miao, Jinxin,Qin, Tingting,Yang, Nian,Zhang, Xinhui,Zhang, Zhenqiang,Zhao, Taoqian,Zhao, Xuan
, (2021/08/19)
Histone lysine-specific demethylase 1 (LSD1) is an important epigenetic modulator, and is implicated in malignant transformation and tumor pathogenesis in different ways. Therefore, the inhibition of LSD1 provides an attractive therapeutic target for cancer therapy. Based on drug repurposing strategy, we screened our in-house chemical library toward LSD1, and found that the EGFR inhibitor erlotinib, an FDA-approved drug for lung cancer, possessed low potency against LSD1 (IC50 = 35.80 μM). Herein, we report our further medicinal chemistry effort to obtain a highly water-soluble erlotinib analog 5k (>100 mg/mL) with significantly enhanced inhibitory activity against LSD1 (IC50 = 0.69 μM) as well as higher specificity. In MGC-803 cells, 5k suppressed the demethylation of LSD1, indicating its cellular activity against the enzyme. In addition, 5k had a remarkable capacity to inhibit colony formation, suppress migration and induce apoptosis of MGC803 cells. Furthermore, in MGC-803 xenograft mouse model, 5k treatment resulted in significant reduction in tumor size by 81.6% and 96.1% at dosages of 40 and 80 mg/kg/d, respectively. Our findings indicate that erlotinib-based analogs provide a novel structural set of LSD1 inhibitors with potential for further investigation, and may serve as novel candidates for the treatment of LSD1-overexpressing cancers.
Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway
Chao, Gao,Dai, Honglin,Ke, Yu,Li, Erdong,Lihong, Shan,Liu, Hongmin,Liu, Limin,Si, Xiaojie,Wang, Zhengjie,Yang, Zhang,Zhang, Luye,Zhang, Qiurong,Zheng, Jiaxin
, (2021/07/28)
In order to find new and highly effective anti-tumor drugs with targeted therapeutic effects, a series of novel 4-aminoquinazoline derivatives containing N-phenylacetamide structure were designed, synthesized and evaluated for antitumor activity against four human cancer cell lines (H1975, PC-3, MDA-MB-231 and MGC-803) using MTT assay. The results showed that the compound 19e had the most potent antiproliferative activity against H1975, PC-3, MDA-MB-231 and MGC-803 cell lines. At the same time, compound 19e could significantly inhibit the colony formation and migration of H1975 cells. Compound 19e also arrested the H1975 cell cycle in the G1 phase and mediated cell apoptosis, promoted the accumulation of ROS in H1975 cells. Furthermore, compound 19e exerted antitumor effect in vitro by reducing the expression of anti-apoptotic protein Bcl-2 and increasing the pro-apoptotic protein Bax and p53. Mechanistically, compound 19e could significantly decreased the phosphorylation of EGFR and its downstream protein PI3K in H1975 cells. Which indicated that compound 19e targeted H1975 cell via interfering with EGFR-PI3K signaling pathway. Molecular docking showed that compound 19e could bind into the active pocket of EGFR. Those work suggested that compound 19e would have remarkable implications for further design of anti-tumor agents.
NaOH-promoted one-pot aryl isothiocyanate synthesis under mild benchtop conditions
Li, Hang,Liu, Xinyun,Yin, Xiaogang
supporting information, p. 839 - 844 (2021/05/27)
In this work, we have established a green synthesis of aryl isothiocyanates promoted by the low-cost and readily available NaOH from aryl amines and carbon disulfide in a one-pot procedure. The developed protocol features no extra desulfurating reagents and mild benchtop conditions, in which NaOH serves as both the base and the desulfurating reagent to decompose the dithiocarbamate intermediate. Fourteen examples of aryl amines bearing electronic neutral, rich and poor substituents, as well as benzylamine, have proved to be compatible substrates in the developed method to furnish the corresponding isothiocyanates. The reaction has been performed on a gram scale to further demonstrate its synthetic utility. Compared to the reported base-promoted synthesis of aryl isothiocyanates that requires the use of special equipment, such as the ball mill or the microwave reactor, the simplicity in operation and scalability enables this method to efficiently access a variety of aryl isothiocyanates.
Synthesis of isothiocyanates using DMT/NMM/TsO? as a new desulfurization reagent
Janczewski, ?ukasz,Kolesińska, Beata,Kr?giel, Dorota
, (2021/05/29)
Thirty-three alkyl and aryl isothiocyanates, as well as isothiocyanate derivatives from esters of coded amino acids and from esters of unnatural amino acids (6-aminocaproic, 4-(aminomethyl)benzoic, and tranexamic acids), were synthesized with satisfactory or very good yields (25–97%). Synthesis was performed in a “one-pot”, two-step procedure, in the presence of organic base (Et3 N, DBU or NMM), and carbon disulfide via dithiocarbamates, with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TsO? ) as a desulfurization reagent. For the synthesis of aliphatic and aromatic isothiocyanates, reactions were carried out in a microwave reactor, and selected alkyl isothiocyanates were also synthesized in aqueous medium with high yields (72–96%). Isothiocyanate derivatives of L-and D-amino acid methyl esters were synthesized, under conditions without microwave radiation assistance, with low racemization (er 99 > 1), and their absolute configuration was confirmed by circular dichroism. Isothiocyanate derivatives of natural and unnatural amino acids were evaluated for antibacterial activity on E. coli and S. aureus bacterial strains, where the most active was ITC 9e.
A catalyst-free method for the synthesis of 1,4,2-dithiazoles from isothiocyanates and hydroxylamine triflic acid salts
An, Zhenyu,Liu, Yafeng,Ren, Yi,Wang, Ting,Yan, Rulong
supporting information, p. 6206 - 6209 (2021/07/28)
A catalyst-free method for the preparation of 1,4,2-dithiazoles is developed by reactions of isothiocyanates with hydroxylamine triflic acid salts. This reaction achieves C-S, C-N, and S-N bond formation, and a range of products are obtained in moderate to good yields. The obvious feature is using shelf-stable hydroxylamine triflic acid salts as a N source to synthesize heterocycles under mild conditions.
Diaryl-substituted thiosemicarbazone: A potent scaffold for the development of New Delhi metallo-β-lactamase-1 inhibitors
Li, Jia-Qi,Sun, Le-Yun,Jiang, Zhihui,Chen, Cheng,Gao, Han,Chigan, Jia-Zhu,Ding, Huan-Huan,Yang, Ke-Wu
, (2020/12/30)
The superbug infection caused by New Delhi metallo-β-lactamase (NDM-1) has become an emerging public health threat. Inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. A potent scaffold, diaryl-substituted thiosemicarbazone, was constructed and assayed with metallo-β-lactamases (MβLs). The obtained twenty-six molecules specifically inhibited NDM-1 with IC50 0.038–34.7 μM range (except 1e, 2e, and 3d), and 1c is the most potent inhibitor (IC50 = 0.038 μM). The structure-activity relationship of synthetic thiosemicarbazones revealed that the diaryl-substitutes, specifically 2-pyridine and 2-hydroxylbenzene improved inhibitory activities of the inhibitors. The thiosemicarbazones exhibited synergistic antimycobacterial actions against E. coli-NDM-1, resulted a 2–512-fold reduction in MIC of meropenem, while 1c restored 16–256-, 16-, and 2-fold activity of the antibiotic on clinical isolates ECs, K. pneumonia and P. aeruginosa harboring NDM-1, respectively. Also, mice experiments showed that 1c had a synergistic antibacterial ability with meropenem, reduced the bacterial load clinical isolate EC08 in the spleen and liver. This work provided a highly promising scaffold for the development of NDM-1 inhibitors.
Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing
Patle, Rajkumar,Shinde, Shital,Patel, Sagarkumar,Maheshwari, Rahul,Jariyal, Heena,Srivastava, Akshay,Chauhan, Neelam,Globisch, Christoph,Jain, Alok,Tekade, Rakesh K.,Shard, Amit
, (2021/05/19)
Several studies have established that cancer cells explicitly over-express the less active isoform of pyruvate kinase M2 (PKM2) is critical for tumorigenesis. The activation of PKM2 towards tetramer formation may increase affinity towards phosphoenolpyruvate (PEP) and avoidance of the Warburg effect. Herein, we describe the design, synthesis, and development of boronic acid-based molecules as activators of PKM2. The designed molecules were inspired by existing anticancer scaffolds and several fragments were assembled in the derivatives. 6a-6d were synthesized using a multi-step synthetic strategy in 55–70% yields, starting from cheap and readily available materials. The compounds were selectively cytotoxic to kill the cancerous cells at 80 nM, while they were non-toxic to the normal cells. The kinetic studies established the compounds as novel activators of PKM2 and (E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxycarbonyl)-3-oxoprop-1-en-1-yl) phenyl)boronic acid (6c) emerged as the most potent derivative. 6c was further evaluated using various in silico tools to understand the molecular mechanism of tetramer formation. Docking studies revealed that 6c binds to the PKM2 dimer at the dimeric interface. Further to ascertain the binding site and mechanism of action, rigorous MD (molecular dynamics) simulations were undertaken, which led to the conclusion that 6c stabilizes the center of the dimeric interface that possibly promotes tetramer formation. We further planned to make a tablet of the developed molecule for oral delivery, but it was seriously impeded owing to poor aqueous solubility of 6c. To improve aqueous solubility and retain 6c at the lower gastrointestinal tract, thiolated chitosan-based nanoparticles (TCNPs) were prepared and further developed as tablet dosage form to retain anticancer potency in the excised goat colon. Our findings may provide a valuable pharmacological mechanism for understanding metabolic underpinnings that may aid in the clinical development of new anticancer agents targeting PKM2.