Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Arachidonic acid is a polyunsaturated omega-6 fatty acid that serves as a key precursor for the biosynthesis of eicosanoids, including hydroxyeicosatetraenoic acids (HETEs) and hydroperoxides (HPETEs), which play critical roles in inflammation, immune response, and platelet aggregation. It is metabolized by enzymes such as lipoxygenases and cyclooxygenases to produce bioactive lipid mediators like 5(S)-HETE, 12(S)-HETE, and 15-HETE, which are involved in various physiological and pathological processes. Additionally, arachidonic acid is implicated in antiplatelet and anti-inflammatory drug development, as well as in metabolic disruptions observed in parasitic infections. Its derivatives are also targeted in synthetic studies to develop potent inhibitors for inflammatory diseases.

506-32-1 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 506-32-1 Structure
  • Basic information

    1. Product Name: Arachidonic acid
    2. Synonyms: (5Z,8Z,11Z,14Z)-5,8,11,14-Icosatetraenoic acid;(all-Z)-5,8,11,14-Eicosatetraenoic acid;(all-z)-5,8,11,14-eicosatetraenoicacid;5,8,11,14-Eicosatetraenoic acid, (all-Z)-;Arachidonate;5,8,11,14-ALL-CIS-EICOSATETRAENOIC ACID;5,8,11,14-EICOSATETRAENOIC ACID;5,8,11,14-EICOSATETRENOIC ACID
    3. CAS NO:506-32-1
    4. Molecular Formula: C20H32O2
    5. Molecular Weight: 304.47
    6. EINECS: 208-033-4
    7. Product Categories: Industrial/Fine Chemicals;Fatty & Aliphatic Acids, Esters, Alcohols & Derivatives;Mixed Fatty Acids;Higher Fatty Acids & Higher Alcohols;Unsaturated Higher Fatty Acids;Biochemistry;Fatty Acid Derivatives & Lipids;Glycerols;Arachidonic Acid;Arachidonic Acid Cascade;Fatty Acid Metabolism;Functional Foods;Lipids in Cell Signaling;Omega 6 fatty acids and derivatives;Polyunsaturated Fatty Acids (PUFAs) and Omega-3 Fatty Acids;AN-AZ;Bioactive Small Molecules;Biochemicals and Reagents;Building Blocks;C13 to C42+;Carbonyl Compounds;Carboxylic Acids;Cell Biology;Cell Signaling and Neuroscience;Chemical Synthesis;Fatty Acids and conjugates;Fatty Acyls;Lipids;Metabolic Pathways;Metabolomics;Nutrition Research;Organic Building Blocks;Polyunsaturated;Unsaturated Fatty Acids and Derivatives;API intermediate
    8. Mol File: 506-32-1.mol
  • Chemical Properties

    1. Melting Point: −49 °C(lit.)
    2. Boiling Point: 169-171 °C0.15 mm Hg(lit.)
    3. Flash Point: >230 °F
    4. Appearance: colorless to light yellow/oil
    5. Density: 0.922 g/mL at 25 °C(lit.)
    6. Vapor Pressure: 8.85E-08mmHg at 25°C
    7. Refractive Index: n20/D 1.4872(lit.)
    8. Storage Temp.: −20°C
    9. Solubility: ethanol: ≥10 mg/mL
    10. PKA: 4.75±0.10(Predicted)
    11. Water Solubility: PRACTICALLY INSOLUBLE
    12. Stability: Light Sensitive, Temperature Sensitive
    13. Merck: 14,765
    14. BRN: 1713889
    15. CAS DataBase Reference: Arachidonic acid(CAS DataBase Reference)
    16. NIST Chemistry Reference: Arachidonic acid(506-32-1)
    17. EPA Substance Registry System: Arachidonic acid(506-32-1)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: 19
    3. Safety Statements: 24/25-19
    4. RIDADR: UN1170 - class 3 - PG 2 - Ethanol
    5. WGK Germany: 3
    6. RTECS: CE6675000
    7. F: 8-10-23
    8. HazardClass: N/A
    9. PackingGroup: N/A
    10. Hazardous Substances Data: 506-32-1(Hazardous Substances Data)

506-32-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 506-32-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,0 and 6 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 506-32:
(5*5)+(4*0)+(3*6)+(2*3)+(1*2)=51
51 % 10 = 1
So 506-32-1 is a valid CAS Registry Number.
InChI:InChI=1/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6+,10-9+,13-12+,16-15+

506-32-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (10931)  Arachidonicacid  >95.0% (GC)

  • 506-32-1

  • 10931-250MG

  • 1,366.56CNY

  • Detail
  • Sigma

  • (10931)  Arachidonicacid  >95.0% (GC)

  • 506-32-1

  • 10931-1G

  • 3,268.98CNY

  • Detail
  • Sigma

  • (A3611)  Arachidonicacid  from non-animal source, ≥98.5% (GC)

  • 506-32-1

  • A3611-10MG

  • 686.79CNY

  • Detail
  • Sigma

  • (A3611)  Arachidonicacid  from non-animal source, ≥98.5% (GC)

  • 506-32-1

  • A3611-100MG

  • 1,288.17CNY

  • Detail
  • Sigma

  • (A3611)  Arachidonicacid  from non-animal source, ≥98.5% (GC)

  • 506-32-1

  • A3611-1G

  • 8,605.35CNY

  • Detail
  • Sigma-Aldrich

  • (23401)  Arachidonicacid  analytical standard

  • 506-32-1

  • 23401-50MG

  • 1,547.91CNY

  • Detail

506-32-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name arachidonic acid

1.2 Other means of identification

Product number -
Other names Immunocytophyte

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:506-32-1 SDS

506-32-1Synthetic route

ethyl arachidonate
95285-77-1, 1808-26-0

ethyl arachidonate

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With triethylamine In water; acetonitrile at 30℃; under 7500600 Torr; for 96h;78%
With potassium hydroxide
eicosa-5,8,11,14-tetraynoic acid
1191-85-1

eicosa-5,8,11,14-tetraynoic acid

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With sodium tetrahydroborate; hydrogen; ethylenediamine; nickel diacetate In ethanol at 20℃;34%
With hydrogen; Lindlar's catalyst In methanol
With quinoline; water; hydrogen; Lindlar's catalyst 1.) AcOEt; Yield given. Multistep reaction;
arachidonic acid methyl ester
38575-18-7

arachidonic acid methyl ester

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With potassium hydroxide; ethanol
1-chloro-nonadeca-4c,7c,10c,13c-tetraene
612852-05-8

1-chloro-nonadeca-4c,7c,10c,13c-tetraene

carbon dioxide
124-38-9

carbon dioxide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
(i) EtMgBr, Et2O, (ii) /BRN= 1900390/, Et2O; Multistep reaction;
carbon dioxide
124-38-9

carbon dioxide

C19H31ClMg

C19H31ClMg

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
In tetrahydrofuran
2-trans-Alken-5,8,11,14-eicosatetrainsaeure
40924-42-3

2-trans-Alken-5,8,11,14-eicosatetrainsaeure

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With pyridine; hydrogen; Lindlar's catalyst In ethyl acetate
(3Z,6Z)-1-oxo-dodecadienal
13553-09-8

(3Z,6Z)-1-oxo-dodecadienal

(4-carboxybutyl)triphenylphosphonium bromide
17814-85-6

(4-carboxybutyl)triphenylphosphonium bromide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With sodium hexamethyldisilazane 1.) THF, HMPA, RT, 2 h, 2.) from -100 to 0 deg C, 4 h; Multistep reaction;
(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid methyl ester
86179-96-6

(5Z,8Z,11Z,14Z)-20-hydroxyeicosa-5,8,11,14-tetraenoic acid methyl ester

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With lithium aluminium tetrahydride 1.) tosylation;; Multistep reaction;
arachidonic acid TMS ester
113516-18-0

arachidonic acid TMS ester

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With sodium thiosulfate In water Yield given;
(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid isobutyl ester
119520-63-7

(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid isobutyl ester

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With sodium hydroxide In ethanol for 12h; Ambient temperature; Yield given;
cetyl arachidonate

cetyl arachidonate

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With potassium hydroxide for 4h; Heating;40 mg
arachidonic acid octabromide

arachidonic acid octabromide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With ethanol beim Erhitzen mit verkupfertem Zink-Staub;
eicosa-5,8,11,14-tetraynoic acid

eicosa-5,8,11,14-tetraynoic acid

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
With quinoline; Petroleum ether Hydrogenation.an Lindlar-Katalysator;
With methanol Hydrogenation.an Lindlar-Katalysator;
1-Heptyne
628-71-7

1-Heptyne

HgO

HgO

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 9 steps
1: K2CO3, NaI, CuI / dimethylformamide / 4 h / 20 °C
2: K2CO3 / methanol / 4 h / 20 °C
3: 81.9 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
4: K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
5: p-toluenesulfonic acid / methanol / 1 h / 20 °C
6: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
7: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
8: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
9: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
5-hexynonitrile
14918-21-9

5-hexynonitrile

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: 75.5 percent / gaseous HCl / methanol; H2O / 6 h / 60 °C
2: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
3: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
4: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
methyl hex-5-ynoate
77758-51-1

methyl hex-5-ynoate

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
2: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
3: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
undeca-2,5-diyn-1-ol
35378-79-1

undeca-2,5-diyn-1-ol

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 7 steps
1: 81.9 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
2: K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
3: p-toluenesulfonic acid / methanol / 1 h / 20 °C
4: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
5: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
6: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
7: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
1-bromo-2,5-undecadiyne
34498-24-3

1-bromo-2,5-undecadiyne

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 6 steps
1: K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
2: p-toluenesulfonic acid / methanol / 1 h / 20 °C
3: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
4: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
5: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
6: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
1-bromo-2,5,8-tetradecatriyne
34498-26-5

1-bromo-2,5,8-tetradecatriyne

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
2: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
3: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
1-hydroxy-2,5,8-tetradecatriyne
35378-84-8

1-hydroxy-2,5,8-tetradecatriyne

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
2: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
3: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
4: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
Eicosa-5,8,11,14-tetrain-1-saeuremethylester
102471-97-6

Eicosa-5,8,11,14-tetrain-1-saeuremethylester

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
2: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
2-Tetradeca-2,5,8-triynyloxy-tetrahydro-furan

2-Tetradeca-2,5,8-triynyloxy-tetrahydro-furan

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 5 steps
1: p-toluenesulfonic acid / methanol / 1 h / 20 °C
2: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
3: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
4: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
5: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
Benzoic acid undeca-2,5-diynyl ester

Benzoic acid undeca-2,5-diynyl ester

A

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

B

KMnO4

KMnO4

Conditions
ConditionsYield
Multi-step reaction with 8 steps
1: K2CO3 / methanol / 4 h / 20 °C
2: 81.9 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
3: K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
4: p-toluenesulfonic acid / methanol / 1 h / 20 °C
5: 79.2 percent / PPh3, CBr4 / CH2Cl2 / 0.67 h / 0 °C
6: 0.89 g / K2CO3, NaI, CuI / dimethylformamide / 5 h / 20 °C
7: 66.3 percent / 5percent aq. NaOH / methanol / 3 h / 20 °C
8: 1.) H2, quinoline, 2.) H2O / 1.) Lindlar's cat. / 1.) AcOEt
View Scheme
(Z)-3-nonenal
31823-43-5

(Z)-3-nonenal

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: 1.) NaN(SiMe3)2 / 1.) THF, toluene, RT, 1 h, 2.) from -100 to 0 deg C, 4 h
2: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
3: 1.) NaN(SiMe3)2 / 1.) THF, HMPA, RT, 2 h, 2.) from -100 to 0 deg C, 4 h
View Scheme
(Z)-3-nonenal diisopropyl acetal
120018-49-7

(Z)-3-nonenal diisopropyl acetal

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
2: 1.) NaN(SiMe3)2 / 1.) THF, toluene, RT, 1 h, 2.) from -100 to 0 deg C, 4 h
3: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
4: 1.) NaN(SiMe3)2 / 1.) THF, HMPA, RT, 2 h, 2.) from -100 to 0 deg C, 4 h
View Scheme
(Z,Z)-3,6-dodecadienal diisopropyl acetal
117203-38-0

(Z,Z)-3,6-dodecadienal diisopropyl acetal

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
2: 1.) NaN(SiMe3)2 / 1.) THF, HMPA, RT, 2 h, 2.) from -100 to 0 deg C, 4 h
View Scheme
hexanal
66-25-1

hexanal

magnesium aluminium-isopropylate

magnesium aluminium-isopropylate

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 5 steps
1: 1.) NaN(SiMe3)2 / 1.) THF, toluene, RT, 1 h, 2.) from -100 to 0 deg C, 4 h
2: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
3: 1.) NaN(SiMe3)2 / 1.) THF, toluene, RT, 1 h, 2.) from -100 to 0 deg C, 4 h
4: 0.1 M aq. p-toluenesulfonic acid / tetrahydrofuran / 0.3 h / Heating
5: 1.) NaN(SiMe3)2 / 1.) THF, HMPA, RT, 2 h, 2.) from -100 to 0 deg C, 4 h
View Scheme
N-(p-nitrophenyl)-arachidonamide
119520-58-0

N-(p-nitrophenyl)-arachidonamide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 1.) phosgene, 2.) pyridine / 1.) CH2Cl2, 0 deg C, 2.) CH2Cl2, rt, 30 min, 3.) CH2Cl2, 3 h
2: 3 N aq. NaOH / ethanol / 12 h / Ambient temperature
View Scheme
6-chloro-1-hexanol
2009-83-8

6-chloro-1-hexanol

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

Conditions
ConditionsYield
Multi-step reaction with 5 steps
1: sodium iodide / acetone / 8 h / Heating
2: potassium carbonate / acetonitrile / 10 h / Heating
3: 2.) n-BuLi / tetrahydrofuran / 0.5 h / -78 - -30 °C / 1.) acetonitrile, reflux, 10 h; 2.) THF, from -78 deg C to -30 deg C, 30 min
4: hexamethylphosphoric acid triamide / 1.) -78 deg C, 30 min; 2.) from -78 deg C to 0 deg C, 90 min
5: 2.) lithium aluminum hydride / 1.) tosylation;
View Scheme
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

methyl arachidonate
2566-89-4

methyl arachidonate

Conditions
ConditionsYield
In methanol at 0℃; for 0.333333h;100%
In diethyl ether
In diethyl ether at 0℃; Yield given;
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

arachidonyl alcohol
13487-46-2

arachidonyl alcohol

Conditions
ConditionsYield
With lithium aluminium tetrahydride In diethyl ether 1.) 30 min, 10 deg C, 2.) 30 min, reflux;100%
With lithium aluminium tetrahydride In tetrahydrofuran at 0 - 20℃; for 2h; Inert atmosphere;99%
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With lithium aluminium tetrahydride In tetrahydrofuran at 0 - 20℃; for 2h; Inert atmosphere;
Stage #2: With water; sodium hydroxide In tetrahydrofuran for 1h;
99%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

cis-14,15-epoxyeicosatrienoic acid
197508-62-6

cis-14,15-epoxyeicosatrienoic acid

Conditions
ConditionsYield
With human recombinant cytochrome P450 2E1 Enzymatic reaction; stereoselective reaction;100%
With dihydrogen peroxide; sodium sulfate In diethyl ether
Multi-step reaction with 2 steps
1.1: CH2Cl2 / 0.33 h
2.1: H2O2; sodium imidazolate / CH2Cl2; diethyl ether / 0.05 h / 20 °C
2.2: KHSO4 / CH2Cl2; diethyl ether / 0.05 h / 20 °C
View Scheme
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

3-O-stearoyl-1-O-(tert-butyl-dimethyl-silanyl)-sn-glycerol
1360614-23-8

3-O-stearoyl-1-O-(tert-butyl-dimethyl-silanyl)-sn-glycerol

2-O-arachidonoyl-3-O-(tert-butyldimethylsilyl)-1-O-stearoyl-sn-glycerol
1363901-86-3

2-O-arachidonoyl-3-O-(tert-butyldimethylsilyl)-1-O-stearoyl-sn-glycerol

Conditions
ConditionsYield
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane; N,N-dimethyl-formamide at 20℃; for 12h; Inert atmosphere; Darkness;99%
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane; N,N-dimethyl-formamide Inert atmosphere; Darkness;99%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

3-(5-methyl-4-(trifluoromethyl)thiazol-2-yl)bicyclo[1.1.1]pentan-1-amine hydrochloride

3-(5-methyl-4-(trifluoromethyl)thiazol-2-yl)bicyclo[1.1.1]pentan-1-amine hydrochloride

(5Z,8Z,11Z,14Z)-N-(3-(5-methyl-4-(trifluoromethyl)thiazol-2-yl)bicyclo[1.1.1]pentan-1-yl)icosa-5,8,11,14-tetraenamide

(5Z,8Z,11Z,14Z)-N-(3-(5-methyl-4-(trifluoromethyl)thiazol-2-yl)bicyclo[1.1.1]pentan-1-yl)icosa-5,8,11,14-tetraenamide

Conditions
ConditionsYield
With pyridine In dichloromethane; N,N-dimethyl-formamide at 20℃; for 0.5h;99%
1,3-dibutanoyloxy-2-propanol
17364-00-0

1,3-dibutanoyloxy-2-propanol

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

2-((5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy)propane-1,3-diyl dibutyrate
1274596-36-9

2-((5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy)propane-1,3-diyl dibutyrate

Conditions
ConditionsYield
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In tetrahydrofuran; dichloromethane at 0℃; for 4h;98%
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane at 20℃; for 24h;88%
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane at 0 - 20℃; Inert atmosphere;72%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

6-((3Z,6Z,9Z)-1-iodopentadeca-3,6,9-trien-1-yl)tetrahydro-2Hpyran-2-one
742103-77-1

6-((3Z,6Z,9Z)-1-iodopentadeca-3,6,9-trien-1-yl)tetrahydro-2Hpyran-2-one

Conditions
ConditionsYield
With 2,6-dimethylpyridine; iodine In dichloromethane at 0℃; for 15h; Inert atmosphere; Cooling with ice;96%
With 2,4,6-trimethyl-pyridine; iodine In dichloromethane at 0℃; for 14h;83%
With potassium hydrogencarbonate In ethanol; hexane; water at 24℃; for 16h;62%
With potassium triiodide; potassium hydrogencarbonate In tetrahydrofuran; water at 0℃;
With iodine; sodium hydrogencarbonate In ethanol5 g
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

ethanolamine
141-43-5

ethanolamine

anandamide
94421-68-8

anandamide

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With 1,1'-carbonyldiimidazole In dichloromethane at 20℃; for 0.5h;
Stage #2: ethanolamine In dichloromethane for 12h;
96%
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With 1-[(1-(cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino)]-uronium hexafluorophosphate; N-ethyl-N,N-diisopropylamine In dichloromethane; acetonitrile at 20℃; for 0.166667h; Inert atmosphere;
Stage #2: ethanolamine In dichloromethane; acetonitrile at 20℃; Inert atmosphere;
85%
With Candida antarctica lipase B In hexane at 50℃; for 6h; Inert atmosphere; Enzymatic reaction;72.7%
(E)-N-methoxy-N-methyloctadec-9-enamide
288862-96-4

(E)-N-methoxy-N-methyloctadec-9-enamide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

N-Methoxy-N-methyl-arachidonamide
229021-66-3

N-Methoxy-N-methyl-arachidonamide

Conditions
ConditionsYield
96%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethylamine
134179-38-7

2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethylamine

N-{{[(azidoethoxy)ethoxy]ethoxy}ethyl}arachidonoylamide
1391826-57-5

N-{{[(azidoethoxy)ethoxy]ethoxy}ethyl}arachidonoylamide

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate In N,N-dimethyl-formamide at 20℃; for 0.166667h; Inert atmosphere;
Stage #2: With N-ethyl-N,N-diisopropylamine In N,N-dimethyl-formamide for 0.5h; Inert atmosphere;
Stage #3: 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethylamine In N,N-dimethyl-formamide at 20℃; for 3h; Inert atmosphere;
96%
With benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate; N-ethyl-N,N-diisopropylamine In N,N-dimethyl-formamide at 20℃;
N-hydroxyphthalimide
524-38-9

N-hydroxyphthalimide

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

1,3-dioxoisoindolin-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

1,3-dioxoisoindolin-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

Conditions
ConditionsYield
With dmap; diisopropyl-carbodiimide In dichloromethane at 20℃; for 14h;96%
With dmap; diisopropyl-carbodiimide In dichloromethane
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

glycine
56-40-6

glycine

N-arachidonoylglycine
179113-91-8

N-arachidonoylglycine

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With 1,1'-carbonyldiimidazole In dichloromethane at 20℃; for 0.5h;
Stage #2: glycine In dichloromethane for 12h;
96%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

vanillylamine hydrochloride
7149-10-2

vanillylamine hydrochloride

arvanil
128007-31-8

arvanil

Conditions
ConditionsYield
With diethyl cyanophosphonate; triethylamine In tetrahydrofuran for 1.5h;95%
With 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane-2,4,6-trioxide; triethylamine In dichloromethane; ethyl acetate at 0℃; for 0.25h;79%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

oxiranyl-methanol
556-52-5

oxiranyl-methanol

oxiran-2-ylmethyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
439146-24-4

oxiran-2-ylmethyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

Conditions
ConditionsYield
With dmap; dicyclohexyl-carbodiimide In dichloromethane at 20℃; for 12h;95%
With dmap; dicyclohexyl-carbodiimide In dichloromethane at 20℃;42%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

15-azido-14,14-bis(azidomethyl)-3,6,9,12-tetraoxapentadecan-1-amine

15-azido-14,14-bis(azidomethyl)-3,6,9,12-tetraoxapentadecan-1-amine

N-(15-azido-14,14-bis(azidomethyl)-3,6,9,12-tetraoxapentadecan)arachidonoylamide

N-(15-azido-14,14-bis(azidomethyl)-3,6,9,12-tetraoxapentadecan)arachidonoylamide

Conditions
ConditionsYield
With O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate; N-ethyl-N,N-diisopropylamine In N,N-dimethyl-formamide at 35℃; for 16h; Inert atmosphere;95%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

1,3-Bis-triisopropylsilanyloxy-propan-2-ol
98264-26-7

1,3-Bis-triisopropylsilanyloxy-propan-2-ol

(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid 2-triisopropylsilanyloxy-1-triisopropylsilanyloxymethyl-ethyl ester
223259-26-5

(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid 2-triisopropylsilanyloxy-1-triisopropylsilanyloxymethyl-ethyl ester

Conditions
ConditionsYield
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane for 24h; Ambient temperature;94%
C37H60O4Si
1037195-40-6

C37H60O4Si

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

C57H90O5Si
1037195-83-7

C57H90O5Si

Conditions
ConditionsYield
With dmap; dicyclohexyl-carbodiimide In dichloromethane94%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

3-O-[2',3',4',6'-tetracetyl-β-galactose]-1-[6''-pyreneacetamidohexanoyl]glycerol

3-O-[2',3',4',6'-tetracetyl-β-galactose]-1-[6''-pyreneacetamidohexanoyl]glycerol

C61H77NO15

C61H77NO15

Conditions
ConditionsYield
With dmap; dicyclohexyl-carbodiimide In dichloromethane at 20℃; Inert atmosphere;93%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

cholesterol
57-88-5

cholesterol

cholesteryl 5,8,11,14-eicosatetraenoate
604-34-2

cholesteryl 5,8,11,14-eicosatetraenoate

Conditions
ConditionsYield
With pseudomonas lipase In water at 40℃; for 24h; Esterification; Enzymatic reaction;92.1%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

(5Z,8Z,11Z,13E)-15(S)-hydroperoxyeicosa-5,8,11,13-tetraenoic acid
70981-96-3

(5Z,8Z,11Z,13E)-15(S)-hydroperoxyeicosa-5,8,11,13-tetraenoic acid

Conditions
ConditionsYield
With ammonium sulfate soybean lipoxygenase;92%
With soybean lipoxygenase; oxygen at 23℃; Km and Vmax value at pH=9.2;
With ammonium hydroxide (enzymatic oxidation);
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

1-(1’-β-D-[2’,3’,4’,6’-tetracetyl]galactosyl)glycerol
28069-18-3

1-(1’-β-D-[2’,3’,4’,6’-tetracetyl]galactosyl)glycerol

C37H56O13
1613026-83-7

C37H56O13

Conditions
ConditionsYield
With dmap; dicyclohexyl-carbodiimide In dichloromethane at 0 - 20℃; Inert atmosphere;92%
6-nitroveratryl alcohol
1016-58-6

6-nitroveratryl alcohol

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

4,5-dimethoxy-2-nitrobenzyl arachidonate
1446428-04-1

4,5-dimethoxy-2-nitrobenzyl arachidonate

Conditions
ConditionsYield
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane Inert atmosphere;91%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

benzylamine
100-46-9

benzylamine

N-benzylicosa-5Z,8Z,11Z,14Z-tetraenamide

N-benzylicosa-5Z,8Z,11Z,14Z-tetraenamide

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane for 0.25h; Inert atmosphere;
Stage #2: benzylamine In dichloromethane Inert atmosphere;
91%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

isobutyl chloroformate
543-27-1

isobutyl chloroformate

arachidonoyl isobutyl carbonate

arachidonoyl isobutyl carbonate

Conditions
ConditionsYield
With triethylamine In acetonitrile at 0℃; for 0.333333h; Inert atmosphere;90%
With triethylamine In acetonitrile at 0 - 4℃; for 0.333333h;
With 4-methyl-morpholine In acetonitrile at 0℃; for 0.666667h;
With 4-methyl-morpholine; triethylamine In tetrahydrofuran at -15℃; for 0.25h;
With triethylamine In acetone at 20℃; for 0.5h; Inert atmosphere;
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

2-chloroethanamine hydrochloride
870-24-6

2-chloroethanamine hydrochloride

arachidonoyl-2-chloroethylamide

arachidonoyl-2-chloroethylamide

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With oxalyl dichloride; N,N-dimethyl-formamide In dichloromethane at 0℃; for 1h;
Stage #2: 2-chloroethanamine hydrochloride With pyridine In dichloromethane at 0 - 20℃; for 0.5h;
90%
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With triethylamine; isobutyl chloroformate In tetrahydrofuran at 0℃; for 0.5h;
Stage #2: 2-chloroethanamine hydrochloride With triethylamine In tetrahydrofuran at 0℃; for 3.5h;
80%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

combrestatin A4
117048-62-1, 117048-59-6

combrestatin A4

C38H50O6

C38H50O6

Conditions
ConditionsYield
With dmap; diisopropyl-carbodiimide In dichloromethane at 20℃; Inert atmosphere;90%
3-METHOXYBENZYLAMINE
5071-96-5

3-METHOXYBENZYLAMINE

all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

O 1986

O 1986

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride In dichloromethane for 0.25h; Inert atmosphere;
Stage #2: 3-METHOXYBENZYLAMINE In dichloromethane Inert atmosphere;
90%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

(R)-4-(phenylmethyl)-2-oxazolidinone
40217-17-2, 90719-32-7, 120574-96-1, 102029-44-7

(R)-4-(phenylmethyl)-2-oxazolidinone

(R)-N-arachidonyl-4-benzyl-2-oxazolidinone
372504-81-9

(R)-N-arachidonyl-4-benzyl-2-oxazolidinone

Conditions
ConditionsYield
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With pivaloyl chloride; triethylamine In tetrahydrofuran at -78 - 0℃; for 0.666667h;
Stage #2: (R)-4-(phenylmethyl)-2-oxazolidinone With n-butyllithium In tetrahydrofuran at -78 - 0℃; for 3.5h;
88%
all cis 5,8,11,14-eicosatetraenoic acid
506-32-1

all cis 5,8,11,14-eicosatetraenoic acid

2-(3,4-dimethoxyphenyl)-ethylamine
120-20-7

2-(3,4-dimethoxyphenyl)-ethylamine

(5Z,8Z,11Z,14Z)-N-[2-(3,4-dimethoxyphenyl)ethyl]eicosa-5,8,11,14-tetraenamide
869881-08-3

(5Z,8Z,11Z,14Z)-N-[2-(3,4-dimethoxyphenyl)ethyl]eicosa-5,8,11,14-tetraenamide

Conditions
ConditionsYield
With (benzotriazo-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; triethylamine In tetrahydrofuran at 20℃; for 12h;88%
Stage #1: all cis 5,8,11,14-eicosatetraenoic acid With benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride at 20℃; for 0.166667h;
Stage #2: 2-(3,4-dimethoxyphenyl)-ethylamine With triethylamine at 20℃;
76%

506-32-1Relevant articles and documents

Liposomal Delivery of Diacylglycerol Lipase-Beta Inhibitors to Macrophages Dramatically Enhances Selectivity and Efficacy in Vivo

Shin, Myungsun,Snyder, Helena W.,Donvito, Giulia,Schurman, Lesley D.,Fox, Todd E.,Lichtman, Aron H.,Kester, Mark,Hsu, Ku-Lung

, p. 721 - 728 (2018)

Diacylglycerol lipase-beta (DAGLβ) hydrolyzes arachidonic acid (AA)-containing diacylglycerols to produce bioactive lipids including endocannabinoids and AA-derived eicosanoids involved in regulation of inflammatory signaling. Previously, we demonstrated that DAGLβ inactivation using the triazole urea inhibitor KT109 blocked macrophage inflammatory signaling and reversed allodynic responses of mice in inflammatory and neuropathic pain models. Here, we tested whether we could exploit the phagocytic capacity of macrophages to localize delivery of DAGLβ inhibitors to these cells in vivo using liposome encapsulated KT109. We used DAGLβ-tailored activity-based probes and chemical proteomic methods to measure potency and selectivity of liposomal KT109 in macrophages and tissues from treated mice. Surprisingly, delivery of ~5 μg of liposomal KT109 was sufficient to achieve ~80% inactivation of DAGLβ in macrophages with no apparent activity in other tissues in vivo. Our macrophage-targeted delivery resulted in a >100-fold enhancement in antinociceptive potency compared with free compound in a mouse inflammatory pain model. Our studies describe a novel anti-inflammatory strategy that is achieved by targeted in vivo delivery of DAGLβ inhibitors to macrophages.

Stable isotope liquid chromatography-tandem mass spectrometry assay for fatty acid amide hydrolase activity

Rakers, Christin,Zoerner, Alexander A.,Engeli, Stefan,Batkai, Sandor,Jordan, Jens,Tsikas, Dimitrios

, p. 699 - 705 (2012)

Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d4-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d4-EA) and the internal standard 13C2-EA. Selected reaction monitoring of m/z 66 → m/z 48 (d4-EA) and m/z 64 → m/z 46 (13C2-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d4-AEA hydrolysis obeyed Michaelis-Menten kinetics (KM = 12.3 μM, Vmax = 27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC50 = 24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa.

A SIMPLE PROCESS FOR THE PURIFICATION OF ARACHIDONIC ACID

Corey, E. J.,Wright, Stephen W.

, p. 2729 - 2730 (1984)

Pure arachidonic acid (1) and docosahexanoic acid (3) are available by a two-step purification method from commercial 50percent acids with high efficiency.

Pig Liver Esterases Hydrolyze Endocannabinoids and Promote Inflammatory Response

Zhou, Qiongqiong,Yan, Bingfang,Sun, Wanying,Chen, Qi,Xiao, Qiling,Xiao, Yuncai,Wang, Xiliang,Shi, Deshi

, (2021/06/07)

Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.

Effect of Site-Specific Peptide-Tag Labeling on the Biocatalytic Properties of Thermoalkalophilic Lipase from Geobacillus thermocatenulatus

Romero, Oscar,de las Rivas, Blanca,Lopez-Tejedor, David,Palomo, Jose M.

, p. 369 - 378 (2018/01/11)

Tailor-made peptides were investigated for site-specific tag labeling of Geobacillus thermocatenulatus lipase (GTL). GTL was first genetically modified by introducing a unique cysteine on the lid site of the enzyme to produce two variants (GTLσ-A193C and GTLσ-S196C). Chemical modification was performed by using a small library of cysteine-containing peptides. The synthesized peptide–lipase biocatalysts were highly stable, more active, more specific, and more selective toward different substrates than unmodified GTL. Very high enzyme thermostability of GTLσ-A193C modified with peptides Ac-Cys-Phe-Gly-Phe-Gly-Phe-CONH2 (1) and Ac-Cys-Phe-Phe-CONH2 (2) (>95 % activity after 24 h at 60 °C) was observed. The incorporation of 1 and 2 in GTLσ-S196C improved its catalytic activity in the hydrolysis of p-nitrophenyl butyrate by factors of three and greater than five, respectively. The specificity for short-chain versus long-chain esters was also strongly improved. The diacylglycerol activity of GTLσ-S196C was enhanced more than tenfold by the incorporation of 1 and more than threefold by modification of this variant with Ac-Cys-(Arg)7-CONH2 (6) in the hydrolysis of 1-stearoyl-2-arachidonoyl-sn-glycerol. The enantioselectivity of GTLσ-S196C increased for all formed bioconjugates, and the GTLσ-S196C–1 conjugate was the most active and selective in the hydrolysis of dimethylphenyl glutarate at pH 7 (72 % ee), also showing an inversion in the enzyme enantiopreference.

Synthesis of 14,15-EET from Arachidonic Acid Using Urea-Hydrogen Peroxide as the Oxidant

Xie, Fuchun,Li, Bingbing X.,Alkayed, Nabil J.,Xiao, Xiangshu

, p. 105 - 110 (2015/10/20)

14,15- Epoxyeicosatrienoic acid (14,15-EET) is an endogenous bioactive lipid with pharmacological benefits in multiple cardiovascular diseases. We describe here a practical synthesis of 14,15-EET from arachidonic acid using urea-hydrogen peroxide (UHP) as the oxidant.

Highly Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacylglycerol Lipase Activity in Neurons

Baggelaar, Marc P.,Chameau, Pascal J. P.,Kantae, Vasudev,Hummel, Jessica,Hsu, Ku-Lung,Janssen, Freek,Van Der Wel, Tom,Soethoudt, Marjolein,Deng, Hui,Den Dulk, Hans,Allarà, Marco,Florea, Bogdan I.,Di Marzo, Vincenzo,Wadman, Wytse J.,Kruse, Chris G.,Overkleeft, Herman S.,Hankemeier, Thomas,Werkman, Taco R.,Cravatt, Benjamin F.,Van Der Stelt, Mario

supporting information, p. 8851 - 8857 (2015/07/27)

Diacylglycerol lipase (DAGL)-α and -β are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific β-lactone-based probes led to the discovery of α-ketoheterocycle LEI105 as a potent, highly selective, and reversible dual DAGL-α/DAGL-β inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase, and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that "on demand biosynthesis" of 2-AG is responsible for retrograde signaling.

Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase

McDougle, Daniel R.,Kambalyal, Amogh,Meling, Daryl D.,Das, Aditi

, p. 616 - 627 (2015/01/16)

The endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are arachidonic acid (AA) derivatives that are known to regulate human cardiovascular functions. CYP2J2 is the primary cytochrome P450 in the human heart and is most well known for the metabolism of AA to the biologically active epoxyeicosatrienoic acids. In this study, we demonstrate that both 2-AG and AEA are substrates for metabolism by CYP2J2 epoxygenase in the model membrane bilayers of nanodiscs. Reactions of CYP2J2 with AEA formed four AEA-epoxyeicosatrienoic acids, whereas incubations with 2-AG yielded detectable levels of only two 2-AG epoxides. Notably, 2-AG was shown to undergo enzymatic oxidative cleavage to form AA through a NADPH-dependent reaction with CYP2J2 and cytochrome P450 reductase. The formation of the predominant AEA and 2-AG epoxides was confirmed using microsomes prepared from the left myocardium of porcine and bovine heart tissues. The nuances of the ligand-protein interactions were further characterized using spectral titrations, stopped-flow small-molecule ligand egress, and molecular modeling. The experimental and theoretical data were in agreement, which showed that substitution of the AA carboxylic acid with the 2-AG ester-glycerol changes the binding interaction of these lipids within the CYP2J2 active site, leading to different product distributions. In summary, we present data for the functional metabolomics of AEA and 2-AG by a membrane-bound cardiovascular epoxygenase.

Simultaneous determination of 2-arachidonoylglycerol, 1- arachidonoylglycerol and arachidonic acid in mouse brain tissue using liquid chromatography/tandem mass spectrometry

Zhang, Mei-Yi,Gao, Ying,Btesh, Joan,Kagan, Natasha,Kerns, Edward,Samad, Tarek A.,Chanda, Pranab K.

scheme or table, p. 167 - 177 (2010/08/06)

Endocannabinoids (ECs), such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), modulate a number of physiological processes, including pain, appetite and emotional state. Levels of ECs are tightly controlled by enzymatic biosynthesis and degradation in vivo. However, there is limited knowledge about the enzymes that terminate signaling of the major brain EC, 2-AG. Identification and quantification of 2-AG, 1-AG and arachidonic acid (AA) is important for studying the enzymatic hydrolysis of 2-AG. We have developed a sensitive and specific quantification method for simultaneous determination of 2-AG, 1-AG and AA from mouse brain and adipose tissues by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using a simple brain sample preparationmethod. The separations were carried out based on reversed phase chromatography. Optimization of electrospray ionization conditions established the limits of detection (S/N=3) at 50, 25 and 65 fmol for 2-AG, 1-AG and AA, respectively. The methodswere selective, precise (%R.S.D.a range of 0.02-20, 0.01-10 and 0.05-50 ng/mg tissue for 2-AG, 1-AG and AA, respectively. The quantificationmethod was validated with consideration of thematrix effects and the mass spectrometry (MS) responses of the analytes and the deuterium labeled internal standard (IS). The developed methods were applied to study the hydrolysis of 2-AG from mouse brain extracts containingmembrane bound monoacylglycerol lipase (MAGL), and to measure the basal levels of 2-AG, 1-AG and AA in mouse brain and adipose tissues. Copyright

Radiosynthesis, in vitro and in vivo evaluation of 123I-labeled anandamide analogues for mapping brain FAAH

wyffels, Leonie,De Bruyne, Sylvie,Blanckaert, Peter,Lambert, Didier M.,De Vos, Filip

experimental part, p. 49 - 56 (2011/02/25)

Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids, including anandamide. This paper is the first report of the synthesis, [123I]-labeling and in vitro and in vivo evaluation of anandamide analogues as potential metabolic trapping radioligands for in vivo evaluation of brain FAAH. N-(2-Iodoethyl)linoleoylamide (2) and N-(2-iodoethyl)arachidonylamide (4) were synthesized with good yields (75% and 86%, respectively) in a two steps procedure starting from their respective acids. In vitro analyses, performed using recombinant rat FAAH and [3H]-anandamide, demonstrated interaction of 2 and 4 with FAAH (IC50 values of 5.78 μM and 3.14 μM, respectively). [123I]-2 and [123I]-4 were synthesized with radiochemical yields of 21% and 12%, respectively, and radiochemical purities were >90%. Biodistribution studies in mice demonstrated brain uptake for both tracers (maximum values of 1.23%ID/g at 3 min pi for [123I]-2 and 0.58%ID/g at 10 min pi for [123I]-4). However, stability studies demonstrated the sensitivity of both tracers to dehalogenation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 506-32-1