620-16-6Relevant articles and documents
CoPd Nanoalloys with Metal–Organic Framework as Template for Both N-Doped Carbon and Cobalt Precursor: Efficient and Robust Catalysts for Hydrogenation Reactions
Zhu, Jie,Xu, Deng,Ding, Lu-jia,Wang, Peng-cheng
, p. 2707 - 2716 (2021/01/21)
In this work, a series of metal–organic framework (MOF)-derived CoPd nanoalloys have been prepared. The nanocatalysts exhibited excellent activities in the hydrogenation of nitroarenes and alkenes in green solvent (ethanol/water) under mild conditions (H2 balloon, room temperature). Using ZIF-67 as template for both carbon matrix and cobalt precursor coating with a mesoporous SiO2 layer, the catalyst CoPd/NC@SiO2 was smoothly constructed. Catalytic results revealed a synergistic effect between Co and Pd components in the hydrogenation process due to the enhanced electron density. The mesoporous SiO2 shell effectively prevented the sintering of hollow carbon and metal NPs at high temperature, furnishing the well-dispersed nanoalloy catalysts and better catalytic performance. Moreover, the catalyst was durable and showed negligible activity decay in recycling and scale-up experiments, providing a mild and highly efficient way to access amines and arenes.
Chemoselective Hydrogenation of Olefins Using a Nanostructured Nickel Catalyst
Klarner, Mara,Bieger, Sandra,Drechsler, Markus,Kempe, Rhett
supporting information, p. 2157 - 2161 (2021/05/21)
The selective hydrogenation of functionalized olefins is of great importance in the chemical and pharmaceutical industry. Here, we report on a nanostructured nickel catalyst that enables the selective hydrogenation of purely aliphatic and functionalized olefins under mild conditions. The earth-abundant metal catalyst allows the selective hydrogenation of sterically protected olefins and further tolerates functional groups such as carbonyls, esters, ethers and nitriles. The characterization of our catalyst revealed the formation of surface oxidized metallic nickel nanoparticles stabilized by a N-doped carbon layer on the active carbon support.
Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co-N Frustrated Lewis Pair Surfaces
Deng, Qiang,Deng, Shuguang,Gao, Ruijie,Li, Xiang,Tsang, Shik Chi Edman,Wang, Jun,Zeng, Zheling,Zou, Ji-Jun
, p. 21294 - 21301 (2021/12/17)
Hydrogen (H2) is widely used as a reductant for many hydrogenation reactions; however, it has not been recognized as a catalyst for the acid transformation of active sites on solid surface. Here, we report the H2-promoted hydration of alkenes (such as styrenes and cyclic alkenes) and epoxy alkanes over single-atom Co-dispersed nitrogen-doped carbon (Co-NC) via a transformation mechanism of acid-base sites. Specifically, the specific catalytic activity and selectivity of Co-NC are superior to those of classical solid acids (acidic zeolites and resins) per micromole of acid, whereas the hydration catalysis does not take place under a nitrogen atmosphere. Detailed investigations indicate that H2 can be heterolyzed on the Co-N bond to form Hδ-Co-N-Hδ+ and then be converted into OHδ-Co-N-Hδ+ accompanied by H2 generation via a H2O-mediated path, which significantly reduces the activation energy for hydration reactions. This work not only provides a novel catalytic method for hydration reactions but also removes the conceptual barriers between hydrogenation and acid catalysis.
Controlling the Lewis Acidity and Polymerizing Effectively Prevent Frustrated Lewis Pairs from Deactivation in the Hydrogenation of Terminal Alkynes
Geng, Jiao,Hu, Xingbang,Liu, Qiang,Wu, Youting,Yang, Liu,Yao, Chenfei
, p. 3685 - 3690 (2021/05/31)
Two strategies were reported to prevent the deactivation of Frustrated Lewis pairs (FLPs) in the hydrogenation of terminal alkynes: reducing the Lewis acidity and polymerizing the Lewis acid. A polymeric Lewis acid (P-BPh3) with high stability was designed and synthesized. Excellent conversion (up to 99%) and selectivity can be achieved in the hydrogenation of terminal alkynes catalyzed by P-BPh3. This catalytic system works quite well for different substrates. In addition, the P-BPh3 can be easily recycled.
Novel CoNi-metal-organic framework crystal-derived CoNi?C: Synthesis and effective cascade catalysis
Chen, Yu-Zhen,Li, Chenchen,Sun, Jia-Lu,Wang, Guo-Ming,Wang, Lin,Zhang, Jian-Wei
supporting information, p. 10567 - 10573 (2020/09/18)
Evaluating the catalytic influence of metal sites on derivates obtained from the calcination of metal-organic frameworks (MOFs) is very important for the rational construction of novel MOFs. Based on this catalytic functional guidance, two new Co-MOF and CoNi-MOF crystals were designed and synthesized, and further pyrolyzed to obtain corresponding porous carbon-based catalysts. Interestingly, the derivates exhibited better catalytic performance toward the tandem reaction of dehydrogenation of NH3BH3 and subsequent hydrogenation reduction of nitro/olefin compounds than those of the CoNi-ZIF (a star MOF)-derived CoNi?carbon and most metal catalysts. Significantly, the CoNi?C maintained excellent activity, even after 30 cycles, demonstrating its great longevity and durability, which are especially important for the practical application of metal catalysts in industrial catalysis.
MICROCAPSULES AND PROCESSES FOR THEIR PREPARATION
-
Page/Page column 43-45, (2019/06/11)
The present invention provides microcapsules encapsulating hydrophilic or hydrophobic active agents in an inorganic shell, processes for their preparation and compositions comprising them.
Murahashi Cross-Coupling at ?78 °C: A One-Pot Procedure for Sequential C?C/C?C, C?C/C?N, and C?C/C?S Cross-Coupling of Bromo-Chloro-Arenes
Sinha, Narayan,Heijnen, Dorus,Feringa, Ben L.,Organ, Michael G.
supporting information, p. 9180 - 9184 (2019/07/04)
The coupling of organolithium reagents, including strongly hindered examples, at cryogenic temperatures (as low as ?78 °C) has been achieved with high-reactivity Pd-NHC catalysts. A temperature-dependent chemoselectivity trigger has been developed for the selective coupling of aryl bromides in the presence of chlorides. Building on this, a one-pot, sequential coupling strategy is presented for the rapid construction of advanced building blocks. Importantly, one-shot addition of alkyllithium compounds to Pd cross-coupling reactions has been achieved, eliminating the need for slow addition by syringe pump.
Reevaluation of the Palladium/Carbon-Catalyzed Decarbonylation of Aliphatic Aldehydes
Ajda?i?, Vladimir,Nikoli?, Andrea,Kerner, Michael,Wipf, Peter,Opsenica, Igor M.
supporting information, p. 1781 - 1785 (2018/08/12)
An improved method for the decarbonylation of aliphatic aldehydes by using a commercially available Pd/C catalyst is described. The reaction conditions are suitable for linear, cyclic, or sterically demanding substrates, as they afford the corresponding alkanes in yields of up to 99%. In addition, this Pd/C-catalyzed method exhibits good functional-group tolerance. A comparison of previously reported methods with the present one showed that the reaction conditions play a crucial role in the outcome of the reaction. The method can also be applied in a two-step reaction sequence for the synthesis of industrially important compounds.
A Co2B Mediated NaBH4 Reduction Protocol Applicable to a Selection of Functional Groups in Organic Synthesis
Lundevall, Frida Johanne,Elumalai, Vijayaragavan,Drageset, Audun,Totland, Christian,Bj?rsvik, Hans-René
supporting information, p. 3416 - 3425 (2018/07/29)
A high-yielding and high-rate reduction method that operates with alkenes, alkynes, azides, nitriles, and nitroarenes was developed and optimized. The method makes use of sodium borohydride reduction of CoSO4 under release of hydrogen along with the formation of Co2B as a nanoparticle material. The produced Co2B activates the various functional groups for hydride reduction. The protocol was proven to operate with an assortment of functional groups to provide good to excellent yields. Furthermore, the reduction method was successfully adapted, implemented, and developed for a continuous flow approach using the multi-jet oscillating disk (MJOD) flow reactor platform at atmospheric pressure.
Phosphine-free cobalt pincer complex catalyzed: Z -selective semi-hydrogenation of unbiased alkynes
Landge, Vinod G.,Pitchaimani, Jayaraman,Midya, Siba P.,Subaramanian, Murugan,Madhu, Vedichi,Balaraman, Ekambaram
, p. 428 - 433 (2018/02/07)
Herein, we report a novel, molecularly defined NNN-type cobalt pincer complex catalyzed transfer semi-hydrogenation of unbiased alkynes to Z-selective alkenes. This unified process is highly stereo- and chemo-selective and exhibits a broad scope as well as wide functional group tolerance. Ammonia-borane (AB), a bench-stable substrate with high gravimetric hydrogen capacity, was used as a safe and practical transfer hydrogenating source.