Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4'-Chloroacetophenone is an organic compound that belongs to the class of phenolic derivatives. It is characterized by the presence of a chlorine atom attached to the 4' position of the acetophenone molecule, which consists of a phenyl group linked to an ethanone group. This chemical structure endows 4'-Chloroacetophenone with specific properties that make it suitable for various applications, particularly in the field of law enforcement and personal defense.

99-91-2 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 99-91-2 Structure
  • Basic information

    1. Product Name: 4'-Chloroacetophenone
    2. Synonyms: 1-(4-chlorophenyl)-ethanon;1-(4-chlorophenyl)ethanone[qr];4’-chloro-acetophenon;4-acetylchlorobenzene;4-chloroacetophenone[qr];4-chlorophenylmethylketone;Acetophenone, 4'-chloro-;acetophenone,4-chloro-[qr]
    3. CAS NO:99-91-2
    4. Molecular Formula: C8H7ClO
    5. Molecular Weight: 154.59
    6. EINECS: 202-800-7
    7. Product Categories: Chlorobenzene Series;Acetophenone Series;FINE Chemical & INTERMEDIATES;Aromatic Acetophenones & Derivatives (substituted);Organics;C7 to C8;Carbonyl Compounds;Ketones
    8. Mol File: 99-91-2.mol
    9. Article Data: 673
  • Chemical Properties

    1. Melting Point: 74-76 °C(lit.)
    2. Boiling Point: 232 °C(lit.)
    3. Flash Point: 194 °F
    4. Appearance: Clear colorless to yellow/Liquid After Melting
    5. Density: 1.192 g/mL at 25 °C(lit.)
    6. Vapor Pressure: 8 mm Hg ( 90 °C)
    7. Refractive Index: n20/D 1.554(lit.)
    8. Storage Temp.: Store below +30°C.
    9. Solubility: 111mg/l (slow decomposition)
    10. Water Solubility: 111 mg/L (25 ºC)
    11. Merck: 14,2116
    12. BRN: 386014
    13. CAS DataBase Reference: 4'-Chloroacetophenone(CAS DataBase Reference)
    14. NIST Chemistry Reference: 4'-Chloroacetophenone(99-91-2)
    15. EPA Substance Registry System: 4'-Chloroacetophenone(99-91-2)
  • Safety Data

    1. Hazard Codes: T+,Xn
    2. Statements: 22-26-37/38-41-36/37/38-36/37
    3. Safety Statements: 26-28-36/37/39-45-28A-36
    4. RIDADR: UN 3416 6.1/PG 2
    5. WGK Germany: 3
    6. RTECS: KM5600000
    7. TSCA: Yes
    8. HazardClass: 6.1
    9. PackingGroup: II
    10. Hazardous Substances Data: 99-91-2(Hazardous Substances Data)

99-91-2 Usage

Uses

Used in Law Enforcement:
4'-Chloroacetophenone is used as a tear gas for riot control, serving as an effective means to manage and disperse crowds during civil unrest or protests. Its ability to cause intense irritation to the eyes, respiratory tract, and skin makes it a potent agent for controlling large groups of people.
Used in Personal Defense:
In addition to its role in riot control, 4'-Chloroacetophenone is also utilized as a component of chemical mace or pepper spray. It is employed for self-defense purposes against small groups or individuals, providing a non-lethal means of protection. When used in this context, 4'-Chloroacetophenone can incapacitate an aggressor temporarily, allowing the user to escape or seek assistance.

Synthesis Reference(s)

The Journal of Organic Chemistry, 44, p. 2568, 1979 DOI: 10.1021/jo01328a051Tetrahedron Letters, 42, p. 265, 2001 DOI: 10.1016/S0040-4039(00)01935-3Synthetic Communications, 25, p. 2261, 1995 DOI: 10.1080/00397919508011781

Safety Profile

Poison by intraperitoneal route. Moderately toxic by ingestion. A powerful irritant and lachrymator. Human systemic effects by inhalation: lachrymation and unspecified effects on the eye and sense of smell. Combustible when exposed to heat or flame. To fight fire, use water, foam, alcohol foam, dry chemical. When heated to decomposition or on contact with water or steam it emits toxic fumes of Cl-

Check Digit Verification of cas no

The CAS Registry Mumber 99-91-2 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 9 and 9 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 99-91:
(4*9)+(3*9)+(2*9)+(1*1)=82
82 % 10 = 2
So 99-91-2 is a valid CAS Registry Number.

99-91-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12115)  4'-Chloroacetophenone, 98+%   

  • 99-91-2

  • 25g

  • 132.0CNY

  • Detail
  • Alfa Aesar

  • (A12115)  4'-Chloroacetophenone, 98+%   

  • 99-91-2

  • 250g

  • 546.0CNY

  • Detail
  • Alfa Aesar

  • (A12115)  4'-Chloroacetophenone, 98+%   

  • 99-91-2

  • 1000g

  • 1009.0CNY

  • Detail
  • Alfa Aesar

  • (A12115)  4'-Chloroacetophenone, 98+%   

  • 99-91-2

  • 5000g

  • 4424.0CNY

  • Detail

99-91-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4'-Chloroacetophenone

1.2 Other means of identification

Product number -
Other names 4-acetylchlorobenzene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:99-91-2 SDS

99-91-2Relevant articles and documents

Catalytic oxidation of alcohols by a novel manganese Schiff base ligand derived from salicylaldehyd and l-Phenylalanine in ionic liquids

Rong, Meizhu,Wang, Juan,Shen, Yanping,Han, Jinyu

, p. 51 - 53 (2012)

A selective oxidation of alcohols to corresponding carbonyl compounds in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate([bmim]BF4) was achieved by using a novel salicylaldehyd amino acid Schiff base manganese ligand. The catalytic s

Selective Activation of Unstrained C(O)-C Bond in Ketone Suzuki-Miyaura Coupling Reaction Enabled by Hydride-Transfer Strategy

Zhong, Jing,Zhou, Wuxin,Yan, Xufei,Xia, Ying,Xiang, Haifeng,Zhou, Xiangge

, p. 1372 - 1377 (2022/02/23)

A Rh(I)-catalyzed ketone Suzuki-Miyaura coupling reaction of benzylacetone with arylboronic acid is developed. Selective C(O)-C bond activation, which employs aminopyridine as a temporary directing group and ethyl vinyl ketone as a hydride acceptor, occurs on the alkyl chain containing a β-position hydrogen. A series of acetophenone products were obtained in yields up to 75%.

Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein

Geng, Haoxing,Liu, Xin,Zhu, Qing

supporting information, (2021/12/20)

An environmentally friendly aerobic oxidation of benzyl C(sp3)-H bonds to ketones via selective oxidation catalysis was developed. Fluorescein is an efficient photocatalyst with excellent chemical selectivity. The reaction has a wide substrate scope, and a successful gram-scale experiment demonstrated its potential industrial utility.

Stepwise benzylic oxygenation via uranyl-photocatalysis

Hu, Deqing,Jiang, Xuefeng

supporting information, p. 124 - 129 (2022/01/19)

Stepwise oxygenation at the benzylic position (1°, 2°, 3°) of aromatic molecules was comprehensively established under ambient conditions via uranyl photocatalysis to produce carboxylic acids, ketones, and alcohols, respectively. The accuracy of the stepwise oxygenation was ensured by the tunability of catalytic activity in uranyl photocatalysis, which was adjusted by solvents and additives demonstrated through Stern–Volmer analysis. Hydrogen atom transfer between the benzylic position and the uranyl catalyst facilitated oxygenation, further confirmed by kinetic studies. Considerably improved efficiency of flow operation demonstrated the potential for industrial synthetic application.

Promoting charge separation in donor-acceptor conjugated microporous polymers: Via cyanation for the photocatalytic reductive dehalogenation of chlorides

Deng, Jiyong,Fang, Zhengjun,Lan, Donghui,Liao, Yunfeng,Liu, Qingquan,Zhang, Weijie,Zhou, Xiang

, p. 7151 - 7159 (2021/11/17)

Conjugated microporous polymers (CMPs) have emerged as promising heterogeneous photocatalysts for organic transformations owing to their structural designability and functional versatility. However, limited by the insufficient separation of the photo-generated excitons, their photocatalytic efficiency falls far short of expectations. Herein, we demonstrate a cyanation strategy to promote charge carrier separation in CMPs by selectively incorporating carbazole and cyano groups as electron-donating and electron-withdrawing units, respectively. The resulting CMPs feature π-extended donor (D)-acceptor (A) conjugation structures endowing them with distinct semiconducting properties, in which the efficient charge separation and transfer and wide visible-light absorption are facilitated. Compared to the cyano-free counterpart, the cyano-functionalized CMPs showed superior photocatalytic efficiency as exemplified by photocatalytic reductive dehalogenation of chlorides. More prominently, full recyclability of the designed CMPs as well as catalytic activity for at least ten runs without the loss of catalytic performance in photocatalytic reductive dehalogenation of chlorides demonstrated their robustness and sustainability. This journal is

An Artificial Light-Harvesting System with Tunable Fluorescence Color in Aqueous Sodium Dodecyl Sulfonate Micellar Systems for Photochemical Catalysis

Li, Xinglong,Wang, Ying,Song, Ao,Zhang, Minghui,Chen, Mengning,Jiang, Man,Yu, Shengsheng,Wang, Rongzhou,Xing, Lingbao

supporting information, p. 2725 - 2730 (2021/08/03)

In the present work, an artificial light-harvesting system with fluorescence resonance energy transfer (FRET) is successfully fabricated in aqueous sodium dodecyl sulfonate (SDS) micellar systems. Since the tight and orderly arrangement of dodecyl in the SDS micelles is hydrophobic, tetra-(4-pyridylphenyl)ethylene (4PyTPE) can be easily encapsulated into the hydrophobic layer of SDS micelles through noncovalent interaction, which exhibits aggregation-induced emission (AIE) phenomenon and can be used as energy donor. By using amphoteric sulforhodamine 101 (SR101) fluorescent dye attached to the negatively charged surface of SDS micelles through electrostatic interaction as energy acceptor, the light-harvesting FRET process can be efficiently simulated. Through the steady-state emission spectra analysis in the micelle-mediated energy transfer from 4PyTPE to SR101, the fluorescence emission can be tuned and white light emission with CIE coordinates of (0.31, 0.29) can be successfully achieved by tuning the donor/acceptor ratio. More importantly, to better mimic natural photosynthesis, the SDS micelles with 4PyTPE and SR101 FRET system showed enhanced catalytic activity in photochemical catalysis for dehalogenation of α-bromoacetophenone in aqueous solution and the photocatalytic reaction could be extended to gram levels.

Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2and fine chemical synthesis

Yadav, Dolly,Kumar, Abhishek,Kim, Jae Young,Park, No-Joong,Baeg, Jin-Ook

supporting information, p. 9573 - 9580 (2021/04/26)

The targeted synthesis of an efficient, visible light active, recyclable, freestanding covalent organic framework thin film photocatalyst for multi-faceted photocatalysis is the essence of the proposed work. A simple, scalable, reagent free synthesis of a thin film at the interface of 5,10,15,20-tetra-(4-aminophenyl)porphyrin, 2-vinylbenzene-1,4-dicarbaldehyde in nitrobenzene and aqueous glyoxal affords centimetre sized continuous 2D thin film with substantial stability, flexibility and efficient visible light activity. Strikingly different from the regular imine based COF, the incorporation of the glyoxal unit as a modulator helps in band gap tuning and induces flexibility within the thin film. An interplay between time and concentration helps in achieving a thin film photocatalyst with efficient photocatalytic activity for 1,4-NADH regeneration and selective formic acid formation from CO2. The optimum band edge position of the thin film photocatalyst also enables solar fine chemical synthesisviareductive dehalogenation under visible light illumination with excellent recyclability. The present work gives insight into visible light active thin film formation en route to metal-free sustainable photocatalysis.

Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy

Deng, Xin,Qian, Rongrong,Zhou, Hongwei,Yu, Lei

supporting information, p. 1029 - 1032 (2020/10/23)

Irradiated by visible light, the recyclable (PhTe)2-catalyzed oxidative deoximation reaction could occur under mild conditions. In comparison with the thermo reaction, the method employed reduced catalyst loading (1 mol% vs. 2.5 mol%), but afforded elevated product yields with expanded substrate scope. This work demonstrated that for the organotellurium-catalyzed reactions, visible light might be an even more precise driving energy than heating because it could break the Te–Te bond accurately to generate the active free radical catalytic intermediates without damaging the fragile substituents (e.g., heterocycles) of substrates. The use of O2 instead of explosive H2O2 as oxidant affords safer reaction conditions from the large-scale application viewpoint.

PhSe(O)OH/NHPI-catalyzed oxidative deoximation reaction using air as oxidant

Shi, Yaocheng,Wang, Feng,Yang, Chenggen,Yu, Lei

, (2021/09/06)

A novel oxidative deoximation method was developed in this article. Compared with the reported organoselenium-catalyzed oxidative deoximation reaction, this reaction employed N-hydroxyphthalimide (NHPI) as the co-catalyst, so that the oxidative deoximation reaction could utilize air as oxidant in the green DMC solvent under mild reaction conditions. Control experiments and X-ray photoelectron spectroscopy (XPS) analysis results indicated that NHPI was essential for activating the catalytic organoselenium species. It could accelerate the activation of molecular oxygen in air to promote the reaction process. The reaction can avoid metal residues in product and is of potential application values in pharmaceutical industry due to the transition metal-free process.

Catalytic alcohol oxidation using cationic Schiff base manganeseIII complexes with flexible diamino bridge

Kakavand, Meysam,Mastrorilli, Piero,Mesto, Ernesto,Neshat, Abdollah,Osanlou, Farzane,Schingaro, Emanuela,Todisco, Stefano

, (2020/11/04)

Four Schiff base manganese(III) complexes with derivatives of [(R,R)-N,N’-bis(salicy1idene)-1,2-cyclohexanediaminato)] including substituents on salicylaldehyde such as 3-methoxy, 3,5-di-tert-butyl and 3,5-chloro were synthesized and characterized using a combination of IR, UV–Vis, and HR ESI-MS techniques. The catalytic activity of these complexes was tested in the oxidation of 1-phenylethanol to acetophenone, revealing very good performances for all of the four manganese complexes. The catalytic reactions were carried out in the presence of tert-butyl hydroperoxide (TBHP) as oxidant and imidazole as co-catalyst. Complex Mn-4, bearing electron withdrawing [(R,R)-N,N’-bis(3,5-di-chloro-salicylidene)-1,2-cyclohexanediaminato)] ligand was found to be the most stable of the tested Mn(III) complexes and was selected for the oxidation of several primary and secondary alcohols.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 99-91-2