612-24-8Relevant articles and documents
Unprecedented Catalysis of Cs+Single Sites Confined in y Zeolite Pores for Selective Csp3-H Bond Ammoxidation: Transformation of Inactive Cs+Ions with a Noble Gas Electronic Structure to Active Cs+Single Sites
Acharyya, Shankha S.,Ghosh, Shilpi,Iwasawa, Yasuhiro,Kaneko, Takuma,Sasaki, Takehiko,Yoshida, Yusuke
, p. 6698 - 6708 (2021/06/25)
We report the transformation of Cs+ ions with an inactive noble gas electronic structure to active Cs+ single sites chemically confined in Y zeolite pores (Cs+/Y), which provides an unprecedented catalysis for oxidative cyanation (ammoxidation) of Csp3-H bonds with O2 and NH3, although in general, alkali and alkaline earth metal ions without a moderate redox property cannot activate Csp3-H bonds. The Cs+/Y catalyst was proved to be highly efficient in the synthesis of aromatic nitriles with yields >90% in the selective ammoxidation of toluene and its derivatives as test reactions. The mechanisms for the genesis of active Cs+ single sites and the ammoxidation pathway of Csp3-H bonds were rationalized by density functional theory (DFT) simulations. The chemical confinement of large-sized Cs+ ions with the pore architecture of a Y zeolite supercage rendered the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap reduction, HOMO component change, and preferable coordination arrangement for the selective reaction promotion, which provides a trimolecular assembly platform to enable the coordination-promoted concerted ammoxidation pathway working closely on each Cs+ single site. The new reaction pathway without involvement of O2-dissociated O atom and lattice oxygen differs from the traditional redox catalysis mechanisms for the selective ammoxidation.
Nitration of deactivated aromatic compounds via mechanochemical reaction
Wu, Jian-Wei,Zhang, Pu,Guo, Zhi-Xin
supporting information, (2021/05/05)
A variety of deactivated arenes were nitrated to their corresponding nitro derivatives in excellent yields under high-speed ball milling condition using Fe(NO3)3·9H2O/P2O5 as nitrating reagent. A radical involved mechanism was proposed for this facial, eco-friendly, safe, and effective nitration reaction.
Photoinduced Iron-Catalyzed ipso-Nitration of Aryl Halides via Single-Electron Transfer
Wu, Cunluo,Bian, Qilong,Ding, Tao,Tang, Mingming,Zhang, Wenkai,Xu, Yuanqing,Liu, Baoying,Xu, Hao,Li, Hai-Bei,Fu, Hua
, p. 9561 - 9568 (2021/08/06)
A photoinduced iron-catalyzed ipso-nitration of aryl halides with KNO2 has been developed, in which aryl iodides, bromides, and some of aryl chlorides are feasible. The mechanism investigations show that the in situ formed iron complex by FeSO4, KNO2, and 1,10-phenanthroline acts as the light-harvesting photocatalyst with a longer lifetime of the excited state, and the reaction undergoes a photoinduced single-electron transfer (SET) process. This work represents an example for the photoinduced iron-catalyzed Ullmann-type couplings.
Revisiting the synthesis of aryl nitriles: a pivotal role of CAN
Saikia, Rakhee,Park, Kwihwan,Masuda, Hayato,Itoh, Miki,Yamada, Tsuyoshi,Sajiki, Hironao,Mahanta, Sanjeev P.,Thakur, Ashim J.
, p. 1344 - 1351 (2021/02/27)
Facilitated by the dual role of Ceric Ammonium Nitrate (CAN), herein we report a cost-effective approach for the cyanation of aryl iodides/bromides with CAN-DMF as an addition to the existing pool of combined cyanation sources. In addition to being an oxidant, CAN acts as a source of nitrogen in our protocol. The reaction is catalyzed by a readily available Cu(ii) salt and the ability of CAN to generate ammonia in the reaction medium is utilized to eliminate the additional requirement of a nitrogen source, ligand, additive or toxic reagents. The mechanistic study suggests an evolution of CN?leading to the synthesis of a variety of aryl nitriles in moderate to good yields. The proposed mechanism is supported by a series of control reactions and labeling experiments.
Pd@CeO2-catalyzed cyanation of aryl iodides with K4Fe(CN)6·3H2O under visible light irradiation
Wang, Shengyu,Wang, Jianqiang,Pan, Junyi,Liu, Cheng,Gong, Xubin,Guo, Cheng
, (2021/01/12)
Cyanation of aryl iodides is still challenging work for chemical researchers because of harsh reaction conditions and toxic cyanide sources. Herein, we have developed a new protocol based on the combination of the catalyst Pd@CeO2, nontoxic cyanide source K4[Fe (CN)6]·3H2O, and driving force visible light irradiation. The reaction is operated at relatively moderate temperature (55°C) and exhibits good catalytic efficiency of product aryl nitriles (yields of 89.4%). Moreover, the catalyst Pd@CeO2 possesses good reusability with a slight loss of photocatalytic activity after five consecutive runs. The reaction system based on the above combination shows a wide range of functional group tolerance under the same conditions. Reaction conditions such as temperature, time, the component of catalyst, and solutions are optimized by studying cyanation of 1-iodo-4-nitrobenzene as model reaction. According to these results, the possible mechanism of Pd@CeO2-catalyzed cyanation of aryl iodides under visible light irradiation is proposed based on the influence of visible light on the catalyst and reactant compounds. In all, we provided an environmental and economic method for preparation of aryl nitriles from cyanation of aryl iodides based on the goal of green chemistry for sustainable development.
Efficient nitriding reagent and application thereof
-
Paragraph 0233-0235, (2021/03/31)
The invention discloses an efficient nitriding reagent and application thereof, wherein the nitriding reagent comprises nitrogen oxide, an active agent, a reducing agent and an organic solvent. By applying the nitriding reagent, nitrogen-containing compounds such as amide, nitrile and the like can be produced, and the method is simple in condition, low in waste discharge amount and simple in reaction equipment.
Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products
Pal, Shantanu,Sahoo, Subrata
, p. 18067 - 18080 (2021/12/06)
A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.
Chlorotropylium Promoted Conversions of Oximes to Amides and Nitriles
Xu, Jiaxi,Gao, Yu,Li, Zhenjiang,Liu, Jingjing,Guo, Tianfo,Zhang, Lei,Wang, Haixin,Zhang, Zhihao,Guo, Kai
, p. 311 - 315 (2020/01/25)
Chlorotropylium chloride as a catalyst for the transformations of oximes, ketones, and aldehydes to their corresponding amides and nitriles in excellent yields (up to 99 %) and in short reaction times (mostly 10–15 min). Oximes were electrophilically attacked on the hydroxyl oxygen by chlorotropylium. The produced tropylium oxime ethers were the key intermediates, of which the ketoxime ether led to amide through Beckmann rearrangement, and the aldoxime ether led to nitrile by nitrogen base DBU assisted formal dehydration. This chlorotropylium activation protocol offered general, mild, and efficient avenues bifurcately from oximes to both amides and nitriles by one organocatalyst.
Method for synthesizing aryl cyanide by taking aryl carboxylic acid as raw material
-
Paragraph 0071-0073, (2020/08/22)
The invention discloses a method for synthesizing aryl cyanide by taking aryl carboxylic acid as a raw material, which is characterized in that aryl cyanide is synthesized by taking aryl carboxylic acid as a raw material, taking a combination of NH4X and N, N-dimethylformamide as a cyanide source and taking silver sulfate and copper acetate as catalysts under the action of acid and oxygen. Compared with a conventional aryl cyanide synthesis method, the method disclosed by the invention has the advantages that reaction raw materials (aryl carboxylic acid, NH4X and N, N-dimethylformamide) are cheap and easy to obtain, and the dosage of a metal catalyst is small; meanwhile, oxygen is used as an oxidizing agent, so that the method has the obvious advantages of small environmental pollution, good tolerance to various functional groups on an aromatic ring, high yield and the like; the method disclosed by the invention can be widely applied to synthesis of medicines, functional materials, natural products and other fields in the industry and academic circles.
An aerobic and green C-H cyanation of terminal alkynes
Si, Yi-Xin,Zhang, Song-Lin,Zhu, Peng-Fei
supporting information, p. 9216 - 9220 (2020/12/03)
This study describes a benign C-H cyanation of terminal alkynes with α-cyanoesters serving as a nontoxic cyanide source. In situ generation of the key copper cyanide intermediate is proposed by a sequence of α-C-H oxidation and copper-mediated β-carbon elimination of α-cyanoesters, releasing the α-ketoester byproduct observed experimentally. The ensuing reaction of copper cyanide with terminal alkynes delivers preferentially cyanoalkynes and surpasses the possible Glaser type dimerization of terminal alkynes or the undesired accumulation of HCN under protic conditions. The presence of the co-oxidant K2S2O8 is crucial to this selectivity, probably by promoting oxidative transmetalation and the resulting formation of the Cu(iii)(acetylide)(CN) intermediate. All the reagents and salts used are commercially available, cheap and nontoxic, avoiding the use of highly toxic cyanide salts typically required in cyanation studies. The scope of this reaction is demonstrated with a set of alkynes and α-cyanoesters. The application of this method to late-stage functionalization of the terminal alkyne group in an estrone derivative is also feasible, showing its practical value for drug design.