635-46-1Relevant articles and documents
Correction to: Halogen-Bonding-Induced Hydrogen Transfer to C=N Bond with Hantzsch Ester (Org. Lett. (2014) 16:12 (3244-3247) DOI: 10.1021/ol501259q)
He, Wei,Ge, Yi-Cen,Tan, Choon-Hong
, p. 7684 - 7684 (2019)
The structure of C1 has been revised in the Graphical Abstract/Table of Contents graphic.(Figure presented)
Medium-Sized-Ring Analogues of Dibenzodiazepines by a Conformationally Induced Smiles Ring Expansion
Costil, Romain,Lefebvre, Quentin,Clayden, Jonathan
, p. 14602 - 14606 (2017)
Analogues of dibenzodiazepines, in which the seven-membered nitrogen heterocycle is replaced by a 9–12-membered ring, were made by an unactivated Smiles rearrangement of five- to eight-membered heterocyclic anthranilamides. The conformational preference of the tertiary amide in the starting material leads to intramolecular migration of a range of aryl rings, even those lacking electron-withdrawing activating groups, and provides a method for n→n+4 ring expansion. The medium-ring products adopt a chiral ground state with an intramolecular, transannular hydrogen bond. The rate of interconversion of their enantiomeric conformers depends on solvent polarity. Ring size and adjacent steric hindrance modulate this hidden hydrophilicity, thus making this scaffold a good candidate for drug development.
Study of Hydrodesulfurization by the Use of 35S-Labeled Dibenzothiophene. 2. Behavior of Sulfur in HDS, HDO, and HDN on Sulfided Mo/Al2O3 Catalyst
Kabe, Toshiaki,Quian, Weihua,Ishihara, Atsushi
, p. 912 - 916 (1994)
To investigate the behavior of sulfur during the hydrodesulfurization (HDS), 35S-labeled dibenzothiophene (DBT) was reacted on sulfided Mo/Al2O3.It was found that 35S in DBT was accommodated on the catalyst and the concentration of 35S on the catalyst always reached a steady state under fixed reaction conditions. 35S accommodated on the catalyst cannot be removed without the incorporation of sulfur from HDS of sulfur compounds such as DBT, benzothiophene, thiophene, and thiophenol.The removal rate of 35S from the catelyst depended upon the rate of HDS of these compounds, that is, the amount of sulfur incorporated into the catalyst.It was suggested that H2S is formed from some portion of sulfur on the surface of the catalyst othe than from that in the sulfur compounds.When hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO) reactions were carried out on the catalyst containing 35S, some portion of 35S could be replaced by oxygen atoms and released as H2S; in contrast to this, 35S was hardly replaced by N atoms.
Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Begum, Wahida,Chauhan, Manav,Newar, Rajashree,Rawat, Manhar Singh,Manna, Kuntal
supporting information, p. 1031 - 1040 (2022/01/19)
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal–organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation–hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co–H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base–metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Ru-decorated N-doped carbon nanoflakes for selective hydrogenation of levulinic acid to γ-valerolactone and quinoline to tetrahydroquinoline with HCOOH in water
Chauhan, Arzoo,Kar, Ashish Kumar,Srivastava, Rajendra
, (2022/03/27)
The effective dissociation of biomass-derived formic acid, as a sustainable hydrogen source, in water is explored for the hydrogenation of levulinic acid (LA) and quinoline. Ru decorated carbon nanoflakes prepared by carboreduction (in Ar/H2 atmosphere) of Ru containing N-doped carbon were used as catalysts. The successful formation of Ru-decorated N-doped carbons was confirmed by numerous spectroscopic tools. The catalyst exhibited outstanding activity and selectivity for the hydrogenation of LA and quinoline using formic acid as a hydrogen donor in water under mild conditions. The catalyst afforded 99.8% LA conversion and 100% selectivity for γ-valerolactone (GVL), whereas 99.8% quinoline conversion and 93% selectivity for 1,2,3,4-tetrahydroquinoline (THQ) were obtained. Recycling experiments suggested that the catalyst was stable even after the 5 cycles. Various controlled experiments and characterizations were conducted to demonstrate the structure-activity relations and suggest plausible reaction mechanisms for the hydrogenation of LA and quinoline. The exploration of formic acid as a sustainable H2 source and the development of metal decorated N-doped carbons for hydrogenation of LA and quinoline will be fascinating to catalysis researchers and industrialists.
Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes
Brzozowska, Aleksandra,Rueping, Magnus,Sklyaruk, Jan,Zubar, Viktoriia
, (2022/03/17)
A new manganese catalyzed heterocyclization of aminoalcohols has been accomplished. A wide range of heterocycles were synthesized, including 1,2,3,4-tetrahydroquinolines, dihydroquinolinones, and 2,3,4,5-tetrahydro-1H-benzo[b]azepines. The reaction is performed under mild reaction conditions using air and moisture stable manganese catalysts. The desired heterocycles were obtained in good to excellent yields.
Palladium supported on magnesium hydroxyl fluoride: An effective acid catalyst for the hydrogenation of imines and N-heterocycles
Agbossou-Niedercorn, Francine,Corre, Yann,Dongare, Mohan K.,Kemnitz, Erhard,Kokane, Reshma,Michon, Christophe,Umbarkar, Shubhangi B.
supporting information, p. 19572 - 19583 (2021/11/04)
Palladium catalysts supported on acidic fluorinated magnesium hydroxide Pd/MgF2-x(OH)x were prepared through precipitation or impregnation methods. Applications to the hydrogenation of various aldimines and ketimines resulted in good catalytic activities at mild temperatures using one atmosphere of hydrogen. Quinolines, pyridines and other N-heterocycles were successfully hydrogenated at higher temperature and hydrogen pressure using low palladium loadings and without the use of any acid additive. Such reactivity trend confirmed the positive effect of the Br?nsted and Lewis acid sites from the fluorinated magnesium hydroxide support resulting in the effective pre-activation of N-heterocycle substrates and therefore in the good catalytic activity of the palladium nanoparticles during the hydrogenations. As demonstrated in the hydrogenation of imines, the catalyst was recycled up to 10 times without either loss of activity or palladium leaching. This journal is
Pd/c catalyzed decarboxylation-transfer hydrogenation of quinoline carboxylic acids
Chen, Xia,Zhou, Xiao-Yu
, p. 625 - 633 (2021/09/30)
Pd/C catalyzed decarboxylation-transfer hydrogenation of quinoline carboxylic acids and transfer hydrogenation of quinolines had been developed for the synthesis of 1,2,3,4-tetrahydroquinolines. These two processes were implemented smoothly using Pd/C (0.9 mol%) as a catalyst with ammonium formate as a hydrogen source in ethanol at 80oC. The reaction system can also be applied to transfer hydrogenation of benzo[h]quinoline and 2,9-dimethyl-1,10-phenanthroline with good to excellent yields. And the gram scale and recycling of catalyst had been tested with good results. Furthermore, the mechanism of Pd/C catalyzed reduction of quino-line carboxylic acids and quinolines had been proposed.
Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C-H Activation Processes
Firoozi, Somayeh,Hosseini-Sarvari, Mona
, p. 2117 - 2134 (2021/02/05)
It has been found that the final products of the reaction of sulfonyl chlorides and tertiary amines in the presence of cadmium sulfide nanoparticles under visible light irradiation are highly dependent on the applied reaction conditions. Interestingly, with the change of a reaction condition, different pathways were conducted (visible-light-induced N-dealkylation or sp3 and sp2 C-H activation) that lead to different products such as secondary amines and various sulfonyl compounds. Remarkably, all of these reactions were performed under visible light irradiation and an air atmosphere without any additive or oxidant in benign solvents or under solvent-free conditions. During this study, the CdS nanoparticles as affordable, heterogeneous, and recyclable photocatalysts were designed, successfully synthesized, and fully characterized and applied for these protocols. During these studies, intermediates resulting from the oxidation of tertiary amines are trapped during the photoinduced electron transfer (PET) process. The reaction was carried out efficiently with a variety of substrates to give the corresponding products at relatively short times in good to excellent yields in parallel with the use of the visible light irradiation as a renewable energy source. Most of these processes are novel or are superior in terms of cost-effectiveness, safety, and simplicity to published reports.
Quasi-continuous synthesis of cobalt single atom catalysts for transfer hydrogenation of quinoline
Cheng, Yujie,Gan, Tao,He, Qian,He, Xiaohui,Huang, Liyun,Ji, Hongbing,Sun, Qingdi,Zhang, Hao
, (2021/12/02)
Improving the transfer hydrogenation of N-heteroarenes is of key importance for various industrial processes and remains a challenge so far. We reported here a microcapsule-pyrolysis strategy to quasi-continuous synthesis S, N co-doped carbon supported Co single atom catalysts (Co/SNC), which was used for transfer hydrogenation of quinoline with formic acid as the hydrogen donor. Given the unique geometric and electronic properties of the Co single atoms, the excellent catalytic activity, selectivity and stability were observed. Benefiting from the quasi-continuous synthesis method, the as-obtained catalysts provide a reference for the large-scale preparation of single atom catalysts without amplification effect. Highly catalytic performances and quasi-continuous preparation process, demonstrating a new and promising approach to rational design of atomically dispersed catalysts with maximum atomic efficiency in industrial.