Relevant articles and documents
All total 27 Articles be found
Photochemical transformation of chlorobenzenes and white phosphorus into arylphosphines and phosphonium salts
Gschwind, Ruth M.,Mende, Michael,Scott, Daniel J.,Streitferdt, Verena,Till, Marion,Wolf, Robert
supporting information, p. 1100 - 1103 (2022/02/03)
Chlorobenzenes are important starting materials for the preparation of commercially valuable triarylphosphines and tetraarylphosphonium salts, but their use for the direct arylation of elemental phosphorus has been elusive. Here we describe a simple photochemical route toward such products. UV-LED irradiation (365 nm) of chlorobenzenes, white phosphorus (P4) and the organic superphotoreductant tetrakis(dimethylamino)ethylene (TDAE) affords the desired arylphosphorus compounds in a single reaction step.
Photocatalytic Arylation of P4 and PH3: Reaction Development Through Mechanistic Insight
Cammarata, Jose,Gschwind, Ruth M.,Lennert, Ulrich,Rothfelder, Robin,Scott, Daniel J.,Streitferdt, Verena,Wolf, Robert,Zeitler, Kirsten
supporting information, p. 24650 - 24658 (2021/10/14)
Detailed 31P{1H} NMR spectroscopic investigations provide deeper insight into the complex, multi-step mechanisms involved in the recently reported photocatalytic arylation of white phosphorus (P4). Specifically, these studies have identified a number of previously unrecognized side products, which arise from an unexpected non-innocent behavior of the commonly employed terminal reductant Et3N. The different rate of formation of these products explains discrepancies in the performance of the two most effective catalysts, [Ir(dtbbpy)(ppy)2][PF6] (dtbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) and 3DPAFIPN. Inspired by the observation of PH3 as a minor intermediate, we have developed the first catalytic procedure for the arylation of this key industrial compound. Similar to P4 arylation, this method affords valuable triarylphosphines or tetraarylphosphonium salts depending on the steric profile of the aryl substituents.
The Trityl-Cation Mediated Phosphine Oxides Reduction
Landais, Yannick,Laye, Claire,Lusseau, Jonathan,Robert, Frédéric
supporting information, p. 3035 - 3043 (2021/05/10)
Reduction of phosphine oxides into the corresponding phosphines using PhSiH3 as a reducing agent and Ph3C+[B(C6F5)4]? as an initiator is described. The process is highly efficient, reducing a broad range of secondary and tertiary alkyl and arylphosphines, bearing various functional groups in generally good yields. The reaction is believed to proceed through the generation of a silyl cation, which reaction with the phosphine oxide provides a phosphonium salt, further reduced by the silane to afford the desired phosphine along with siloxanes. (Figure presented.).