846
P. Kota et al. / Phytochemistry 65 (2004) 837–846
Dixon, R.A., 2001. Natural products and disease resistance. Nature
411, 843–847.
during the biosynthesis of lignin in angiosperms. Planta 210, 831–
835.
Dixon, R.A., Chen, F., Guo, D., Parvathi, K., 2001. The biosynthesis
of monolignols: a ‘‘metabolic grid’’, or independent pathways to
guaiacyl and syringyl units? Phytochem. 57, 1069–1084.
Frick, S., Kutchan, T.M., 1999. Molecular cloning and functional
expression of O-methyltransferases common to isoquinoline alka-
loid and phenylpropanoid biosynthesis. Plant J. 17, 329–339.
Gauthier, A., Gulick, P., Ibrahim, R.K., 1996. cDNA cloning and
characterization of a 30/50-O-methyltransferase for partially methy-
lated flavonols from Chrysosplenium americanum. Plant Mol. Biol.
32, 1163–1169.
Matsui, N., Fukushima, K., Yasuda, S., Terashima, N., 1994. On the
behavior of monolignol glucosides in lignin biosynthesis. Holz-
forschung 48, 375–380.
Maury, S., Geoffroy, P., Legrand, M., 1999. Tobacco O-methyl-
transferases involved in phenylpropanoid metabolism. The different
caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyl-
transferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyl-
transferase classes have distinct substrate specificities and expression
patterns. Plant Physiol. 121, 215–223.
Meng, H., Campbell, W.H., 1998. Substrate profiles and expression
of caffeoyl coenzyme A and caffeic acid O-methyltransferases in
secondary xylem of aspen during seasonal development. Plant Mol.
Biol. 38, 513–520.
Gauthier, A., Gulick, P.J., Ibrahim, R.K., 1998. Characterization of
two cDNA clones which encode O-methyltransferases for the
methylation of both flavonoid and phenylpropanoid compounds.
Arch. Biochem. Biophys. 351, 243–249.
Neish, A.C., 1968. Monomeric intermediates in the biosynthesis of
lignin. In: Freudenberg, K., Neish, A.C. (Eds.), Constitution and
Biosynthesis of Lignin. Springer-Verlag, Berlin, pp. 2–43.
Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T., Carraway,
D.T., Smeltzer, R.H., Joshi, C.P., Chiang, V.L., 1999. Coniferyl
aldehyde 5-hydroxylation and methylation direct syringyl lignin
biosynthesis in angiosperms. Proc. Natl. Acad. Sci. U.S.A. 96,
8955–8960.
Gowri, G., Bugos, R.C., Campbell, W.H., Maxwell, C.A., Dixon,
R.A., 1991. Stress responses in alfalfa (Medicago sativa L.) X.
Molecular cloning and expression of S-adenosyl-l-methionine: caf-
feic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis.
Plant Physiol. 97, 7–14.
Guo, D., Chen, F., Inoue, K., Blount, J.W., Dixon, R.A., 2000.
Down-regulation of caffeic acid 3-O-methyltransferase and caffeoyl
CoA 3-O-methyltransferase in transgenic alfalfa (Medicago sativa
L.): impacts on lignin structure and implications for the biosynthesis
of G and S lignin. Plant Cell 13, 73–88.
Parvathi, K., Chen, F., Guo, D., Blount, J.W., Dixon, R.A., 2001.
Substrate preferences of O-methyltransferases in alfalfa suggest new
pathways for 3-O-methylation of monolignols. Plant J. 25, 193–202.
Pichersky, E., Gang, D.R., 2000. Genetics and biochemistry of sec-
ondary metabolites in plants: an evolutionary perspective. Trends
Plant Sci. 5, 439–445.
Guo, D., Chen, F., Dixon, R.A., 2002. Monolignol biosynthesis in
microsomal preparations from lignifying stems of alfalfa (Medicago
sativa L.). Phytochem. 61, 657–667.
Howles, P.A., Paiva, N.L., Sewalt, V.J.H., Elkind, N.L., Bate, Y.,
Lamb, C.J., Dixon, R.A., 1996. Overexpression of l-phenylalanine
ammonia-lyase in transgenic tobacco plants reveals control points
for flux into phenylpropanoid biosynthesis. Plant Physiol. 112,
1617–1624.
Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barriere, Y.,
Mila, I., Lapierre, C., Rigau, J., Puigdomenech, P., Jauneau, A.,
Digonnet, C., Boudet, A.-M., Goffner, D, Pichon, M., 2002. Down-
regulation of caffeic acid O-methyltransferase in maize revisited
using a transgenic approach. Plant Physiol. 130, 1675–1685.
Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann,
P., Werck-Reichart, D., 2001. CYP98A3 from Arabidopsis thaliana
is a 30-hydroxylase of phenolic esters, a missing link in the phenyl-
propanoid pathway. J. Biol. Chem. 276, 36566–36574.
Humphreys, J.M., Chapple, C., 2002. Rewriting the lignin roadmap.
Current Opinion in Plant Biol. 5, 224–229.
Humphreys, J.M., Hemm, M.R., Chapple, C., 1999. New routes for
lignin biosynthesis defined by biochemical characterization of
recombinant ferulate 5-hydroxylase, a multifunctional cytochrome
P450-dependent monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 96,
10045–10050.
Shimada, M., Ohashi, H., Higuchi, T., 1970. O-Methyltransferases
involved in the biosynthesis of lignins. Phytochem. 9, 2463–2470.
Van Doorsselaere, J., Baucher, M., Chognot, E., Chabbert, B., Tollier,
Ibrahim, R.K., Bruneau, A., Bantignies, B., 1998. Plant O-methyl-
transferases: molecular analysis, common signature and classifica-
tion. Plant Mol. Biol. 36, 1–10.
M.-T., Petit-Conil, M., Leple
B., Van Montagu, M., Inze, D., Boerjan, W., Jouanin, L., 1995. A
´
, J.-C., Pilate, G., Cornu, D., Monties,
´
novel lignin in poplar trees with a reduced caffeic acid/5-hydro-
xyferulic acid O-methyltransferase activity. Plant J. 8, 855–864.
Wang, J., Pichersky, E., 1999. Identification of specific residues
involved in substrate discrimination in two plant O-methyl-
transferases. Arch. Biochem. Biophys. 368, 172–180.
Inoue, K., Parvathi, K., Dixon, R.A., 2000. Substrate preferences of
caffeic acid/5-hydroxyferulic acid 3-O-methyltransferases in devel-
oping stems of alfalfa (Medicago sativa L.). Arch. Biochem. Bio-
phys. 375, 175–182.
Inoue, K., Sewalt, V.J.H., balance, G.M., Ni, W., Sturzer, C., Dixon,
¨
Wein, M., Lavid, N., Lunkenbein, S., Lewinsohn, E., Schwab, W.,
Kaldenhoff, R., 2002. Isolation, cloning and expression of a multi-
functional O-methyltransferase capable of forming 2,5-dimethyl-4-
methoxy-3(2H)-furanone, one of the key aroma compounds in
strawberry fruits. Plant J. 31, 755–765.
R.A., 1998. Developmental expression and substrate specificities of
alfalfa caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-
methyltransferase in relation to lignification. Plant Physiol. 117,
761–770.
Li, L., Popko, J.L., Umezawa, T., Chiang, V.L., 2000. 5-Hydro-
xyconiferyl aldehyde modulates enzymatic methylation for syringyl
monolignol formation, a new view of monolignol biosynthesis in
angiosperms. J. Biol. Chem. 275, 6537–6545.
Whetten, R., Sederoff, R., 1995. Lignin biosynthesis. Plant Cell 7,
1001–1013.
Zubieta, C., Dixon, R.A., Noel, J.P., 2001. Crystal structures of chal-
cone O-methyltransferase and isoflavone O-methyltransferase reveal
the structural basis for substrate specificity in plant O-methyl-
transferases. Nature Structural Biol. 8, 271–279.
Martz, F., Maury, S., Picon, G., Legrand, M., 1998. cDNA cloning,
substrate specificity and expression study of tobacco caffeoyl-CoA
3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol.
Biol. 36, 427–437.
Zubieta, C., Kota, P., Ferrer, J.-L., Dixon, R.A., Noel, J., 2002.
Structural basis for the modulation of lignin monomer methylation
by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant
Cell 14, 1265–1277.
Matsui, N., Chen, F., Yasuda, S., Fukushima, K., 2000. Conversion
of guaiacyl to syringyl moeities on the cinnamyl alcohol pathway