Communications
H atoms were situated in close proximity (Figure 1c). The
Keywords: carbohydrates · glycosides · glycosylation ·
oligosaccharides · thioimidates
.
TOCSY data revealed that 1-H and the benzylic H atoms of
the picolyl group (Ha and Hb, d = 5.15 ppm) were part of the
same spin system (Figure 1d). Furthermore, long-range
coupling between C1 (d = 84.89 ppm) and Hc was confirmed
by the HMBC data, which indicated that C1 and Hc were
three bonds apart.
Subsequently, to broaden the scope of the developed
approach, we demonstrated that the 2-O-picolyl moiety could
be removed under conventional catalytic hydrogenation
conditions (Pd/C). Thus, hydrogenolysis of the O-picolyl
moiety in 13 with concomitant removal of the benzyl
protecting groups afforded 22 in 92% yield (Scheme 6). The
[1] Z. J. Witczak in Carbohydrates in Drug Design (Eds.: Z. J.
Witczak, K. A. Nieforth), Marcel Dekker, New York, 1997, p. 1.
[2] S. I. Nishimura in Glycoscience: Chemistry and Chemical
Biology, Vol. 3 (Eds.: B. Fraser-Reid, K. Tatsuta, J. Thiem),
Springer, Berlin, 2001, p. 1993.
[3] G.-J. Boons, Tetrahedron 1996, 52, 1095.
[4] A. V. Demchenko, Lett. Org. Chem. 2005, 2, 580.
[5] D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, J.
Am. Chem. Soc. 1988, 110, 5583.
[6] B. Fraser-Reid, U. E. Udodong, Z. F. Wu, H. Ottosson, J. R.
Merritt, C. S. Rao, C. Roberts, R. Madsen, Synlett 1992, 927.
[7] G. H. Veeneman, J. H. van Boom, Tetrahedron Lett. 1990, 31,
275.
[8] D. K. Baeschlin, A. R. Chaperon, V. Charbonneau, L. G. Green,
S. V. Ley, U. Lucking, E. Walther, Angew. Chem. 1998, 110, 3609;
Angew. Chem. Int. Ed. 1998, 37, 3423.
[9] M. I. Barrena, R. Echarri, S. Castillon, Synlett 1996, 675.
[10] S. I. Hashimoto, H. Sakamoto, T. Honda, H. Abe, S. I. Naka-
mura, S. Ikegami, Tetrahedron Lett. 1997, 38, 8969.
[11] H. Chiba, S. Funasaka, K. Kiyota, T. Mukaiyama, Chem. Lett.
2002, 746.
[12] M. N. Kamat, A. V. Demchenko, Org. Lett. 2005, 7, 3215.
[13] R. W. Friesen, S. J. Danishefsky, J. Am. Chem. Soc. 1989, 111,
6656.
[14] B. Fraser-Reid, Z. Wu, C. W. Andrews, E. Skowronski, J. Am.
Chem. Soc. 1991, 113, 1434.
Scheme 6. Picolyl moiety removal and the synthesis of a trans,trans-linked
trisaccharide 23.
[15] G.-J. Boons, P. Grice, R. Leslie, S. V. Ley, L. L. Yeung,
Tetrahedron Lett. 1993, 34, 8523.
[16] T. Zhu, G.-J. Boons, Org. Lett. 2001, 3, 4201.
[17] N. L. Douglas, S. V. Ley, U. Lucking, S. L. Warriner, J. Chem.
Soc. Perkin Trans. 1 1998, 51.
disaccharide 18, obtained by the chemoselective activation of
8 in preference to 2 (Table 1), was glycosidated with 4 in the
presence of AgOTf to afford trans,trans-linked trisaccharide
23 in 91% yield (Scheme 6). Further investigation of this
approach and its application to convergent target synthesis is
underway in our laboratory. We anticipated that the use of a
disarming nonparticipating group for the second activation
step would be required to achieve the ꢀinverseꢁ trans, cis-
linked oligosaccharide pattern. This type of a neighboring
moiety includes, but perhaps is not limited to, halodenoacyls
(trichloroacetyl, Scheme 3) or other functionalities recently
reported by Crich et al.[33]
In conclusion, a new method for stereocontrolled glyco-
sylation was developed. We demonstrated that complete 1,2-
trans selectivity can be achieved with the use of a 2-O-picolyl
moiety, a novel neighboring group that is capable of efficient
participation through a six-membered intermediate. The 2-O-
picolyl moiety has been shown to retain the glycosyl donor in
the armed state as opposed to conventional acyl participating
moieties. The application of a novel arming participating
moiety to complementary chemoselective oligosaccharide
synthesis also has been developed. This new armed–disarmed
glycosylation strategy allows chemoselective introduction of a
1,2-trans glycosidic linkage prior to other linkages, in contrast
to the Fraser-Reid approach. We expect that the developed
technique, along with the classic armed–disarmed approach
will allow convergent chemoselective synthesis of virtually
any oligosaccharide sequence.
[18] Z. Zhang, I. R. Ollmann, X. S. Ye, R. Wischnat, T. Baasov, C. H.
Wong, J. Am. Chem. Soc. 1999, 121, 734.
[19] X. S. Ye, C. H. Wong, J. Org. Chem. 2000, 65, 2410.
[20] F. Burkhart, A. Zhang, S. Wacowich-Sgarbi, C. H. Wong,Angew.
Chem. 2001, 113, 1314; Angew. Chem. Int. Ed. 2001, 40, 1274.
[21] M. Fridman, D. Solomon, S. Yogev, T. Baasov, Org. Lett. 2002, 4,
281.
[22] Y. Wang, X. Huang, L. H. Zhang, X. S. Ye, Org. Lett. 2004, 6,
4415.
[23] A. V. Demchenko, P. Pornsuriyasak, C. De Meo, N. N. Maly-
sheva, Angew. Chem. 2004, 116, 3131; Angew. Chem. Int. Ed.
2004, 43, 3069.
[24] P. Pornsuriyasak, U. B. Gangadharmath, N. P. Rath, A. V.
Demchenko, Org. Lett. 2004, 6, 4515.
[25] O. Kanie, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1994, 116, 12073.
[26] A. V. Demchenko, C. De Meo, Tetrahedron Lett. 2002, 43, 8819.
[27] N. K. Kochetkov, L. V. Backinowsky, Y. E. Tsvetkov, Tetrahe-
dron Lett. 1977, 3681.
[28] J. H. Kim, H. Yang, J. Park, G. J. Boons, J. Am. Chem. Soc. 2005,
127, 12090.
[29] J. H. Kim, H. Yang, G. J. Boons, Angew. Chem. 2005, 117, 969;
Angew. Chem. Int. Ed. 2005, 44, 947.
[30] Notably, the 1H and 13C NMR data of 19 and 20 are in good
aggreement with those reported for a- and b-N-pyridinium salts:
R. U. Lemieux, A. R. Morgan, Can. J. Chem. 1965, 43, 2205.
[31] K. Bock, C. Pedersen, J. Chem. Soc. Perkin Trans. 2 1974, 293.
[32] One of the possible explanations for the higher stability of 20
could be the influence of the reverse anomeric effect: I.
Tvaroska, T. Bleha, Adv. Carbohydr. Chem. Biochem. 1989, 47,
45.
[33] D. Crich, T. K. Hutton, A. Bangerjee, P. Jayalath, J. Picione,
Tetrahedron: Asymmetry 2005, 16, 105.
Received: August 1, 2005
Published online: October 13, 2005
7126
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 7123 –7126