C O M M U N I C A T I O N S
the determination of the rhombic components prohibited comparison
(Supporting Information).
The magnitudes of the ∆ꢀ tensors observed for the ArgN-
4MMDPA-Ln3+ complexes are only about half as big as those
reported for proteins and peptides10,16 which may be a consequence
of lanthanide coordination with rapidly exchanging water molecules.
Nonetheless, the 4MMDPA tag offers many attractive advantages,
including its small size and thus reduced likelihood of interference
in studies of intermolecular interactions, its formation of stable
nonchiral 1:1 complexes with metal ions, the capability of im-
mobilizing lanthanides near the protein surface, and its straight-
forward chemical synthesis (Supporting Information).
Figure 2. Ribbon representation of the DNA-binding domain of the E.
coli arginine repressor:13 blue, N-terminus; red, C-terminus; magenta,
position of the lanthanide ion in the ArgN-DPA construct. The Cys68
(yellow) and Glu21 (red) side chains are shown as sticks.
Acknowledgment. Supported by the Australian Research
Council.
For maximal accuracy, PCS and RDCs were measured in samples
containing 1:1 mixtures of diamagnetic (Lu3+) and paramagnetic
(Tb3+, Tm3+, or Yb3+) lanthanides. The possibility of measuring
RDCs from aligned (paramagnetic) and unaligned (diamagnetic)
protein molecules present in the same sample is a unique advantage
over RDC measurements using alignment media. An EXSY
spectrum of a mixture of [Lu(DPA)]+ and [Yb(DPA)]+ complexes
showed that the metals exchange with a rate constant of about 0.1
s-1 at 25 °C, that is, the simultaneous presence of two different
metal ions does not result in noticeable exchange broadening.
The PCS measured for the ArgN-4MMDPA complexes with
Tb3+, Tm3+, and Yb3+ were used to determine the ∆ꢀ tensor
parameters of the respective lanthanides. The program Numbat14
afforded a simultaneous fit of all three tensors to a common
lanthanide position with respect to the protein. Performing the fit
for all 23 NMR conformers of ArgN, the metal position varied by
less than (1.2 Å, being on average within 4.6 Å of the sulfur atom
of Cys68 and within 2.6 Å of one of the carboxyl oxygens of Glu21.
The Ln3+-oxygen distance agrees with Ln3+-oxygen distances in
the literature,15 indicating that Glu21 coordinates the lanthanide
ions. The carboxyl group of Glu21 is the only carboxyl group in
the vicinity of Cys68.
Supporting Information Available: Protocols for the synthesis of
4MMDPA and ligation to proteins; 15N-HSQC spectra of ArgN-
4MMDPA with Lu3+, Tb3+, and Tm3+; plot of amide chemical shift
differences ArgN/ArgN-4MMDPA-Lu3+ versus amino acid sequence;
amide chemical shifts of ArgN-4MMDPA with Lu3+, Tb3+, Tm3+
,
and Yb3+; RDC data; Sanson-Flamsteed plots of the ∆ꢀ and alignment
tensors; correlation plots of experimental and calculated PCS and RDCs.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Pintacuda, G.; John, M.; Su, X.-C.; Otting, G. Acc. Chem. Res. 2007, 40,
206–212.
(2) (a) Pintacuda, G.; Park, A. Y.; Keniry, M. A.; Dixon, N. E.; Otting, G.
J. Am. Chem. Soc. 2006, 128, 3696–3702. (b) John, M.; Pintacuda, G.;
Park, A. Y.; Dixon, N. E.; Otting, G. J. Am. Chem. Soc. 2006, 128, 4997–
5009.
(3) (a) Bax, A.; Grishaev, A. Curr. Opin. Struct. Biol. 2005, 15, 563–570. (b)
Tolman, J. R.; Ruan, K. Chem. ReV. 2006, 106, 1720–1736. (c) Lakomek,
N. A.; Carlomagno, T.; Becker, S.; Griesinger, G. J. Biomol. NMR 2006,
34, 101–115. (d) Bouvignies, G.; Markwick, P. R. L.; Blackledge, M.
Chemphyschem 2007, 8, 1901–1909.
(4) (a) Ma, C.; Opella, S. J. J. Magn. Reson. 2000, 146, 381–384. (b) Wo¨hnert,
J.; Franz, K. J.; Nitz, M.; Imperiali, B.; Schwalbe, H. J. Am. Chem. Soc.
2003, 125, 13338–13339. (c) Martin, L. J.; Ha¨hnke, M. J.; Nitz, M.;
Wo¨hnert, J.; Silvaggi, N. R.; Allen, K. N.; Schwalbe, H.; Imperiali, B.
J. Am. Chem. Soc. 2007, 129, 7106–7113.
(5) Ikegami, T.; Verdier, L.; Sakhaii, P.; Grimme, S.; Pescatore, B.; Saxena,
K.; Fiebig, K. M.; Griesinger, C. J. Biomol. NMR 2004, 29, 339–349.
(6) Rodriguez-Castan˜eda, F.; Haberz, P.; Leonov, A.; Griesinger, C. Magn.
Reson. Chem. 2006, 44, S10–S16.
(7) Prudeˆncio, M.; Rohovec, J.; Peters, J. A.; Tocheva, E.; Boulanger, M. J.;
Murphy, M. E. P.; Hupkes, H. J.; Kosters, W.; Impagliazzo, A.; Ubbink,
M. Chem.sEur. J. 2004, 10, 3252–3260.
To assess the rigidity of lanthanide binding, we compared the
∆ꢀ tensors determined from PCS with the alignment tensors
determined from the RDCs of the backbone amides of the regular
secondary structure elements of the ArgN-4MMDPA complexes
with Tb3+, Tm3+, and Yb3+. In the case of a molecule aligned
with the magnetic field by virtue of its paramagnetism, the
alignment tensor should be directly proportional to the ∆ꢀ tensor
(see also footnotes of Table S3):
(8) (a) Keizers, P. H. J.; Desreux, J. F.; Overhand, M.; Ubbink, M. J. Am.
Chem. Soc. 2007, 129, 9292–9293. (b) Vlasie, M. D.; Comuzzi, C.; van
den Nieuwendijk, A. M. C. H.; Prudeˆncio, M.; Overhand, M.; Ubbink, M.
Chem.sEur. J. 2007, 13, 1715–1723.
B02
(9) Su, X.-C.; Huber, T.; Dixon, N. E.; Otting, G. Chembiochem 2006, 7, 1599–
1604.
Aax,rh
)
∆ꢀax,rh
(1)
15µ0kT
(10) Su, X.-C.; McAndrew, K.; Huber, T.; Otting, G. J. Am. Chem. Soc. 2008,
130, 1681–1687.
(11) Pintacuda, G.; Moshref, A.; Leonchiks, A.; Sharipo, A.; Otting, G. J. Biomol.
NMR 2004, 29, 351–361.
where B0 is the magnetic field strength, µ0 is the induction constant,
k is the Boltzmann constant, and T is the temperature. Flexibly
attached lanthanide ions result in smaller ∆ꢀ and alignment tensors
as well as in discrepancies between the orientations of the tensor
axes.10 In the case of the three paramagnetic ArgN-4MMDPA-
Ln3+ complexes, the orientations of the principal axes of alignment
and ∆ꢀ tensors were in close agreement as expected for rigid
lanthanide coordination. In addition, the axial components of the
tensors closely obeyed equation 1, while the large uncertainties in
(12) Grenthe, I. J. Am. Chem. Soc. 1960, 83, 360–364.
(13) Sunnerhagen, M.; Nilges, M.; Otting, G.; Carey, J. Nat. Struct. Biol. 1997,
4, 819–826.
(14) Schmitz, C.; Stanton-Cook, M. J.; Su, X.-C.; Otting, G.; Huber, T. J. Biomol.
NMR 2008, 41, 179–189.
(15) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K.
Chem. ReV. 2002, 102, 1977–2010.
(16) Bertini, I.; Janik, M. B. L.; Lee, Y.-M.; Luchinat, C.; Rosato, A. J. Am.
Chem. Soc. 2001, 123, 4181–4188.
JA803741F
9
J. AM. CHEM. SOC. VOL. 130, NO. 32, 2008 10487