Journal of Medicinal Chemistry
BRIEF ARTICLE
8.38 (d, J = 7.7 Hz, 1H), 8.06 (s, 1H), 7.78 (s, 1H), 7.71 (d, J = 5.2 Hz,
1H), 7.33 (t, J = 7.7 Hz, 1H), 7.09 (t, J = 7.7 Hz, 1H), 7.01 (d, J = 7.7 Hz,
1H), 3.95 (s, 3H), 2.87 (t, J = 7.7 Hz, 2H), 1.83 (m, 2H), 1.00 (t, J = 7.4
Hz, 3H). m/z = 311 [M þ H]þ. Anal. (C18H18N2OS) C, H, N, S.
N-Isopropyl-4-(2-(2-propylpyridin-4-yl)thiazol-4-yl)ani-
line (20). Acetone (2.5 mL, 34.5 mmol) and acetic acid (2.0 mL,
34.5 mmol) were added to a stirred solution of 19 (1.02 g, 3.45 mmol)
in CH2Cl2 (20 mL). After the mixture was stirred for 1 h, Na-
(AcO)3BH (1.5 g, 6.9 mmol) was added. The mixture was stirred for
20 h. The mixture was poured into saturated NaHCO3 solution and
extracted with EtOAc. The combined extracts were dried over
Na2SO4 and concentrated. Chromatography of the crude product
(SiO2, 4:1 hexane/EtOAc) produced 20 (845 mg, 73%) as a white
foam. 1H NMR (300 MHz, CDCl3): δ 8.61 (d, J = 5.2 Hz, 1H), 7.81
(d, J = 8.5 Hz, 2H), 7.76 (d, J = 1.4 Hz, 1H), 7.68 (dd, J = 1.4, 5.2 Hz,
1H), 7.34 (s, 1H), 6.65 (d, J = 8.5 Hz, 2H), 3.70 (m, 1H), 2.86 (t, J =
7.6 Hz, 2H), 1.83 (m, 2H), 1.25 (d, J = 6.0 Hz, 6H), 1.02 (t, J = 7.4 Hz,
3H). m/z = 338 [M þ H]þ. Anal. (C20H23N3S) C, H, N, S.
’ ABBREVIATIONS USED
SREBP, sterol regulatory element-binding protein; S1P, site-1 pro-
tease; S2P, site-2 protease; SCAP, SREBP cleavage-activating pro-
tein; CHO-K1, Chinese hamster ovary K1; PAMPA, parallel artifi-
cial membrane permeability assay; MVK, mevalonate kinase;
HMGCR, HMG-CoA reductase; ACL, ATP citrate lyase; INSIG1,
insulin-induced gene 1; MVD, mevalonate pyrophosphate decar-
boxylase; HMGCS1, HMG-CoA synthase 1; IDI1, isopentenyl
diphosphate δ isomerase 1; SCD1, stearoyl-CoA desaturase; LDLR,
low-density lipoprotein receptor; RPL13A, ribosomal protein L13a;
B2M, β-2 microglobulin; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; HDL, high-density lipoprotein; TG, triglycerides
’ REFERENCES
(1) Brown, M. S.; Goldstein, J. L. The SREBP pathway: regulation of
cholesterol metabolism by proteolysis of a membrane-bound transcrip-
tion factor. Cell 1997, 89, 331–340.
(2) Osborne, T. F. Sterol regulatory element-binding proteins
(SREBPs): key regulators of nutritional homeostasis and insulin action.
J. Biol. Chem. 2000, 275, 32379–32382.
(3) Sakai, J.; Duncan, E. A.; Rawson, R. B.; Hua, X.; Brown, M. S.;
Goldstein, J. L. Sterol-regulated release of SREBP-2 from cell mem-
branes requires two sequential cleavages, one within a transmembrane
segment. Cell 1996, 85, 1037–1046.
(4) Goldstein, J. L.; DeBose-Boyd, R. A.; Brown, M. S. Protein
sensors for membrane sterols. Cell 2006, 124, 35–46.
N-(4-(2-(2-Propylpyridin-4-yl)thiazol-4-yl)phenyl)metha-
nesulfonamide (24). Methanesulfonyl chloride (0.23 mL, 2.97 mmol)
was added to a stirred solution of 19 (800 mg, 2.71 mmol) and pyridine
(0.66 mL, 8.1 mmol) in CH2Cl2 (20 mL) at 0 °C. After being stirred for 0.5
h, the mixture was poured into 2 M citric acid solution and extracted with
EtOAc. The combined extracts were washed with saturated NaHCO3
solution and brine, dried over Na2SO4, and concentrated to produce 24
(880 mg, 87%) as a yellow foam. 1H NMR (300 MHz, CD3OD): δ8.55 (d,
J = 5.2 Hz, 1H), 8.02 (d, J = 8.8 Hz, 2H), 7.95 (s, 1H), 7.90 (d, J = 1.9 Hz,
1H), 7.84 (dd, J = 1.9, 5.2 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 3.00 (s, 3H),
2.86 (t, J = 7.7 Hz, 2H), 1.80 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H). m/z = 374
[M þ H]þ. Anal. (C18H19N3O2S2) C, H, N, S.
(5) Hua, X.; Nohturfft, A.; Goldstein, J. L.; Brown, M. S. Sterol
resistance in CHO cells traced to point mutation in SREBP cleavage-
activating protein. Cell 1996, 87, 415–426.
(6) Radhakrishnan, A.; Sun, L. P.; Kwon, H. J.; Brown, M. S.;
Goldstein, J. L. Direct binding of cholesterol to the purified membrane
region of SCAP: mechanism for a sterol-sensing domain. Mol. Cell 2004,
15, 259–268.
(7) Yang, T.; Espenshade, P. J.; Wright, M. E.; Yabe, D.; Gong, Y.;
Aebersold, R.; Goldstein, J. L.; Brown, M. S. Crucial step in cholesterol
homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane
protein that facilitates retention of SREBPs in ER. Cell 2002, 110,
489–500.
(8) Choi, Y.; Kawazoe, Y.; Murakami, K.; Misawa, H.; Uesugi, M.
Identification of bioactive molecules by adipogenesis profiling of organic
compounds. J. Biol. Chem. 2003, 278, 7320–7324.
(9) Kamisuki, S.; Mao, Q.; Abu-Elheiga, L.; Gu, Z.; Kugimiya, A.;
Kwon, Y.; Shinohara, T.; Kawazoe, Y.; Sato, S.; Asakura, K.; Choo, H. Y.;
Sakai, J.; Wakil, S. J.; Uesugi, M. A small molecule that blocks fat
synthesis by inhibiting the activation of SREBP. Chem. Biol. 2009,
16, 882–892.
(10) Comins, D. L.; Mantlo, N. B. Regiospecific alpha-alkylation of
4-chloro(bromo)pyridine. J. Org. Chem. 1985, 50, 4410–4411.
(11) Bilgin, A. A. 2-Pyridylthiazoles II, synthesis and structure
elucidations. Acta Pharm. Turcica 1988, 30, 133–138.
(12) Adams, C. M.; Reitz, J.; De Brabander, J. K.; Feramisco, J. D.; Li,
L.; Brown, M. S.; Goldstein, J. L. Cholesterol and 25-hydroxycholesterol
inhibit activation of SREBPs by different mechanisms, both involving
SCAP and Insigs. J. Biol. Chem. 2004, 279, 52772–52780.
(13) Horton, J. D.; Shah, N. A.; Warrington, J. A.; Anderson, N. N.;
Park, S. W.; Brown, M. S.; Goldstein, J. L. Combined analysis of
oligonucleotide microarray data from transgenic and knockout mice
identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 12027–12032.
’ ASSOCIATED CONTENT
S
Supporting Information. Schemes S1ꢀS3; synthesis
b
details of 4ꢀ8, 10, 12, 15ꢀ18, 21ꢀ23, 25, and 26; biological
assay methods; HPLC and combustion data. This material is
’ AUTHOR INFORMATION
Corresponding Author
*For S.J.W.: phone, 713-798-4783; fax, 713-796-9438; e-mail,
swakil@bcm.edu. for M.U.: phone, þ81-774-38-3225; fax,
þ81-774-38-3226; e-mail, uesugi@scl.kyoto-u.ac.jp.
Present Addresses
§Ewha Woman’s University, Seoul 120-750, Korea.
Notes
L.A.-E., S.J.W., and M.U. have interests in FGH Biotech, Inc., a
Houston-based company that exclusively licensed the technol-
ogy described in this manuscript.
’ ACKNOWLEDGMENT
This work was supported in part by grants to M.U. from the
Hoh-ansha Foundation and MEXT (Grant-in-Aid 21310140)
and by grants to S.J.W. from the Hefni Technical Training
Foundation and the National Institutes of Health (Grant GM-
63115). We also thank J. Sakai for an SREBP-2 antibody and a
reporter gene construct, and T. Orihara, T. Morii, and T.
Hasegawa for experimental support. S.K. is a postdoctoral fellow
of JSPS. The Kyoto research group participates in the Global
COE program “Integrated Materials Science” (No. B-09).
(14) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 1997, 23, 3–25.
4927
dx.doi.org/10.1021/jm200304y |J. Med. Chem. 2011, 54, 4923–4927