C. Lherbet et al. / Tetrahedron Letters 49 (2008) 5449–5451
5451
3. Liu, J.; Birzin, E. T.; Chan, W.; Yang, Y. T.; Pai, L.-Y.; DaSilva, C.; Hayes, E. C.;
Mosley, R. T.; DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Bioorg.
Med. Chem. Lett. 2005, 15, 715.
4. Farhanullah; Tripathi, B. K.; Srivastava, A. K.; Ram, V. J. Bioorg. Med. Chem. 2004,
12, 1543.
5. Boehme, H.; Tils, L.; Unterhalt, B. Chem. Ber. 1964, 97, 179–185.
6. De Waard, E. R.; Reus, H. R.; Huisman, H. O. Tetrahedron Lett. 1973, 44, 4315.
7. Almena, J.; Foubelo, F.; Yus, M. J. Org. Chem. 1996, 61, 1859–1862.
8. Suzuki, I.; Shigenaga, A.; Manabe, A.; Nemoto, H.; Shibuya, M. Tetrahedron
2003, 59, 5691.
9. Hamura, T.; Hosoya, T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.; Miyamoto,
M.; Yasui, Y.; Matsumoto, T.; Suzuki, K. Helv. Chim. Acta 2002, 85, 3589.
10. Le Roux, C.; Gaspard-Houghmane, H.; Dubas, J.; Jaud, J.; Vignaux, P. J. Org. Chem.
1993, 58, 1835.
Extension of this methodology to the preparation of 2-alkylated
isothiochroman derivatives starting from ketones was then inves-
tigated. Contrary to expectations, in the same experimental condi-
tions no isothiochroman was obtained from acetophenone after
15 h (Table 2, entry 6). In fact, control experiments revealed that
Bi(OTf)3 did not efficiently catalyze the formation of the dithio-
acetal intermediate. It should be noted that neither BiCl3 nor other
bismuth(III) salts were found to catalyze the reaction in our condi-
tions, although these catalysts have proven to be efficient for the
preparation of cyclic dithioacetal such as 1,3-dithiane from both
aliphatic and aromatic aldehydes and ketones.17
When phthaldehydic acid was used as starting aldehyde (Table
2, entry 7), the corresponding thioether was observed as the sole
isolated product in the presence of bismuth triflate. It should be
noted that the same compound was obtained when p-toluenesul-
fonic acid was used as acid catalyst.21
11. Le Roux, C.; Mandrou, S.; Dubac, J. J. Org. Chem. 1996, 61, 3885.
12. Le Boisselier, V.; Coin, C.; Postel, M.; Dunach, E. Tetrahedron Lett. 1995, 51,
4991.
13. Zevaco, T.; Dunach, E.; Postel, M. Tetrahedron Lett. 1993, 34, 2601; Le Boisselier,
V.; Dunach, E.; Postel, M. J. Organomet. Chem. 1994, 482, 119.
14. Garrigues, B.; Gonzaga, F.; Robert, H.; Dubac, J. J. Org. Chem. 1997, 62, 4880.
15. Ollevier, T.; Nadeau, E. J. J. Org. Chem. 2004, 69, 9292; Ollevier, T.; Nadeau, E.
Synlett 2006, 219; Ollevier, T.; Nadeau, E.; Guay-Begin, A.-A. Tetrahedron Lett.
2006, 47, 8351; Ollevier, T.; Nadeau, E.; Eguillon, J.-C. Adv. Synth. Catal. 2006,
348, 2080; Ollevier, T.; Nadeau, E. Org. Biomol. Chem. 2007, 5, 3126; For a
review see: Ollevier, T.; Desroy, V.; Nadeau, E. ARKIVOC 2007, 10.
16. Srivastava, N.; Dasgupta, S. K.; Banik, B. K. Tetrahedron Lett. 2003, 44, 1191.
17. Komatsu, N.; Uda, M.; Suzuki, H. Synlett 1995, 984.
18. General procedure to get isothiochroman derivatives from phenylethanethiol: To a
solution of aldehyde (1 equiv, 0.37 mmol) in toluene (5 mL) were added
phenylethanethiol or phenylethanol (1 equiv) and Bi(OTf)3 (0.1 equiv),
successively. The reaction mixture was warmed up slowly to 100 °C (110 °C
for phenylethanol) and stirred for 2 h. The mixture was cooled, and EtOAc
(5 mL) was added to the mixture. The organic layer was then washed with
water (2 Â 20 mL), dried over MgSO4 and concentrated under reduced
pressure. The desired compound was purified by flash chromatography
S
OH
CHO
Entry 7
O
OH
O
O
O
O
In conclusion, it was demonstrated that iso(thio)chromans can
be efficiently prepared from phenylethanethiol or phenylethanol
and different benzaldehydes in the presence of Bi(OTf)3. Bis-
muth(III) was shown to be essential both in the dithioacetal forma-
tion initial step and in the cyclization to form the isothiochroman
derivative. The procedure was found to be highly efficient, giving
the desired compounds in good to excellent yields. Finally, the
established protocol will be extended to (substituted-phenyl)-
ethanethiol derivatives.
(petroleum ether/EtOAc, 95:5). All compounds reported in Table
2 were
characterized by MS, 1H and 13C NMR.
19. Guiso, M.; Marra, C.; Cavarischia, C. Tetrahedron Lett. 2001, 42, 6531.
20. Characterization of selected products: Entry 1: 1H NMR CDCl3, 300 MHz) d 2.89
(m, 2H); 3.15 (m, 2H); 5.24 (s, 1H); 6.89 (d, J = 7.7 Hz, 1H); 7.16 (m, 2H); 7.25
(m, 1H); 7.46 (t, J = 7.8 Hz, 1H); 7.55 (d, J = 7.8 Hz, 1H); 8.11 (m, 2H); 13C NMR
(CDCl3, 100 MHz) d 24.5; 30.6; 45.1; 122.0; 123.6; 126.4; 127.5; 128.6; 129.1;
130.1; 134.8; 135.1; 136.6; 145.6; 148.2. LRMS: (DCI/NH3, m/z) calcd for
C
15H13NO2S: 271.1, found 289.4 (M+NH4)+. Entry 4: (sulfone) 1H NMR (CDCl3,
300 MHz) d 3.29 (m, 1H); 3.61 (m, 3H); 6.31 (s, 1H); 6.84 (d, J = 7.2 Hz, 1H);
7.16 (d, J = 6.0 Hz, 2H); 7.31 (d, J = 4.2 Hz, 2H); 7.42 (t, J = 7.6 Hz, 1H); 7.57 (m,
2H); 7.90 (t, J = 8.2 Hz, 2H); 8.27 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz)
d 29.4; 45.2; 64.3; 123.8; 125.0; 126.2; 126.9; 127.4; 128.2; 128.9; 129.3;
129.8; 131.1; 132.7, 132.1; 133.8; 133.9. LRMS: (DCI/NH3, m/z) calcd for
Supplementary data
C
19H16O2S: 308.1, found 326.4 (M+NH4)+. Entry 8: 1H NMR CDCl3, 300 MHz) d
Supplementary data associated with this article can be found, in
2.83 (m, 1H); 2.87 (m, 1H); 3.97 (m, 1H); 4.19 (m, 1H); 5.84 (s, 1H); 6.71 (d,
J = 7.6 Hz, 1H); 7.11 (m, 1H); 7.21 (m, 2H); 7.53 (t, J = 7.7 Hz, 1H); 7.68 (d,
J = 7.6 Hz, 1H); 8.2 (m, 1H+1H); 13C NMR (CDCl3, 100 MHz) d 28.6; 64.1; 78.6;
123.1; 123.7; 126.2; 126.5; 127.2; 129.1; 129.4; 133.8; 134.8; 135.8; 144.4;
148.3. LRMS: (DCI/NH3, m/z) calcd for C15H13NO3: 255.1, found 273.4
(M+NH4)+.
References and notes
1. Larghi, E. L.; Kaufman, T. S. Synthesis 2006, 2, 187.
2. Saito, A.; Takayama, M.; Yamazaki, A.; Numaguchi, J.; Hanzawa, Y. Tetrahedron
2007, 63, 4039.
21. Tanzawa, T.; Shirai, N.; Sato, Y.; Hatano, K.; Kurono, Y. J. Chem. Soc., Perkin Trans.
1 1995, 22, 2845.