10.1002/chem.201905777
Chemistry - A European Journal
COMMUNICATION
Almendros, Chem. Rec. 2011, 11, 311–330; e) A. Kamath, I. Ojima,
Tetrahedron 2012, 68, 10640–10664; f) T. Orbegozo, F. Burel, P.
Jubault, X. Pannecoucke, Tetrahedron 2013, 69, 4015–4039; g) B.
Alcaide, P. Almendros, A. Luna, RSC Adv. 2014, 4, 1689–1707; h) C. R.
Pitts, T. Lectka, Chem. Rev. 2014, 114, 7930–7953; i) S. Hosseyni, A.
Jarrahpour, Org. Biomol. Chem. 2018, 16, 6840–6852.
Mei, Y. Li, Y.-L. Ma, B. Wu, Org. Lett. 2014, 16, 480–483; g) X. Wu, K.
Yang, Y. Zhao, H. Sun, G. Li, H. Ge, Nat. Commun. 2015, 6, 6462; h)
S.-J. Zhang, W.-W. Sun, P. Cao, X.-P. Dong, J.-K. Liu, B. Wu, J. Org.
Chem. 2016, 81, 956–968; i) Y. Aihara, N. Chatani, ACS Catal. 2016, 6,
4323–4329; j) T. Zhou, M.-X. Jiang, X. Yang, Q. Yue, Y.-Q. Han, Y.
Ding, B.-F. Shi, Chin. J. Chem. 2020, 38, 242–246.
β-Lactam synthesis by other types of C(sp3)–H functionalization, see: k)
J. Pedroni, M. Boghi, T. Saget, N. Cramer, Angew. Chem. 2014, 126,
9210–9213; Angew. Chem. Int. Ed. 2014, 53, 9064–9067; l) A. McNally,
B. Haffemayer, B. S. L. Collins, M. J. Gaunt, Nature 2014, 510, 129–
133; m) D. Willcox, B. G. N. Chappell, K. F. Hogg, J. Calleja, A. P.
Smalley, M. J. Gaunt, Science 2016, 354, 851–857; n) D. Dailler, R.
Rocaboy, O. Baudoin, Angew. Chem. 2017, 129, 7324–7328; Angew.
Chem. Int. Ed. 2017, 56, 7218–7222.
[5]
a) H. Staudinger, Liebigs Ann. Chem. 1907, 356, 51–123; b) F. H. van
der Steen, G. van Koten, Tetrahedron 1991, 47, 7503–7524; c) C.
Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, Eur. J. Org. Chem.
1999, 3223–3235; d) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002,
124, 1578–1579; e) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide,
Curr. Med. Chem. 2004, 11, 1837–1872; f) E. C. Lee, B. L. Hodous, E.
Bergin, C. Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586–11587;
g) Y.-R. Zhang, L. He, X. Wu, P.-L. Shao, S. Ye, Org. Lett. 2008, 10,
277–280.
[10] M. S. Kharasch, G. Sosnovsky, J. Am. Chem. Soc. 1958, 80, 756.
[11] Kharasch−Sosnovsly type C(sp3)–H functionalization (etherification or
methylation, etc.), see: a) J. Eames, M. Watkinson, Angew. Chem.
2001, 113, 3679–3683; Angew. Chem. Int. Ed. 2001, 40, 3567–3571; b)
M. B. Andrus, J. C. Lashley, Tetrahedron 2002, 58, 845–866; c) J. A.
Mayoral, S. Rodríguez-Rodríguez, L. Salvatella, Chem. Eur. J. 2008, 14,
9274–9285; d) R. T. Gephart, C. L. Mcmullin, N. G. Sapiezynski, E. S.
Jang, M. J. B. Aguila, T. R. Cundari, T. H. Warren, J. Am. Chem. Soc.
2012, 134, 17350–17353; e) S. K. Rout, S. Guin, K. K. Ghara, A.
Banerjee, B. K. Patel, Org. Lett. 2012, 14, 3982–3985; f) Q. Xia, X. Liu,
Y. Zhang, C. Chen, W. Chen, Org. Lett. 2013, 15, 3326–3329; g) J.
Zhao, H. Fang, J. Han, Y. Pan, Org. Lett. 2014, 16, 2530–2533; h) S. K.
Rout, S. Guin, W. Ali, A. Gogoi, B. K. Patel, Org. Lett. 2014, 16, 3086–
3089; i) B. L. Tran, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2014,
136, 17292–17301; j) C.-Y. Wang, R.-J. Song, W.-T. Wei, J.-H. Fan, J.-
H. Li, Chem. Commun. 2015, 51, 2361–2363; k) T. K. Salvador, C. H.
Arnett, S. Kundu, N. G. Sapiezynski, J. A. Bertke, M. R. Boroujeni, T. H.
Warren, J. Am. Chem. Soc. 2016, 138, 16580–16583; l) W. Zhang, F.
Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science
2016, 353, 1014–1018; m) B. Lu, F. Zhu, H.-M. Sun, Q. Shen, Org. Lett.
2017, 19, 1132–1135; n) H. F. T. Klare, A. F. G. Goldberg, D. C.
Duquette, B. M. Stoltz, Org. Lett. 2017, 19, 988–991; o) A. Vasilopoulos,
S. L. Zultanski, S. S. Stahl, J. Am. Chem. Soc. 2017, 139, 7705–7708.
[12] Kharasch−Sosnovsly type C(sp3)–N bond formation, see: a) J. S. Clark,
C. Roche, Chem. Commun. 2005, 5175–5177; b) G. Pelletier, D. A.
Powell, Org. Lett. 2006, 8, 6031–6034; c) S. Wiese, Y. M. Badiei, R. T.
Gephart, S. Mossin, M. S. Varonka, M. M. Melzer, K. Meyer, T. R.
Cundari, T. H. Warren, Angew. Chem. 2010, 122, 9034–9039; Angew.
Chem. Int. Ed. 2010, 49, 8850–8855; d) D. A. Powell, H. Fan, J. Org.
Chem. 2010, 75, 2726–2729; e) Q. Xia, W. Chen, H. Qiu, J. Org. Chem.
2011, 76, 7577–7582; f) S. Santoro, R.-Z. Liao, F. Himo, J. Org. Chem.
2011, 76, 9246–9252; g) Q. Xia, W. Chen, J. Org. Chem. 2012, 77,
9366–9373; h) R. T. Gephart, D. L. Huang, M. J. B. Aguila, G. Schmidt,
A. Shahu, T. H. Warren, Angew. Chem. 2012, 124, 6594–6598; Angew.
Chem. Int. Ed. 2012, 51, 6488–6492; i) B. L. Tran, B. Li, M. Driess, J. F.
Hartwig, J. Am. Chem. Soc. 2014, 136, 2555–2563; j) P. K. Chikkade,
Y. Kuninobu, M. Kanai, Chem. Sci. 2015, 6, 3195–3200; k) F. Teng, S.
Sun, Y. Jiang, J.-T. Yu, J. Cheng, Chem. Commun. 2015, 51, 5902–
5905; l) H.-T. Zeng, J.-M. Huang, Org. Lett. 2015, 17, 4276–4279; m) X.
Qi, L. Zhu, R. Bai, Y. Lan, Sci. Rep. 2017, 7, 43579.
[6]
a) M. Kinugasa, S. Hashimoto, J. Chem. Soc., Chem. Commun. 1972,
466–467; b) M. Miura, M. Enna, K. Okuro, M. Nomura, J. Org. Chem.
1995, 60, 4999–5004; c) A. Basak, S. C. Ghosh, T. Bhowmich, A. K.
Das, V. Bertolasi, Tetrahedron Lett. 2002, 43, 5499–5501; d) M. M.-C.
Lo, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 4572–4573; e) R. Shintani,
G. C. Fu, Angew. Chem. 2003, 115, 4216–4219; Angew. Chem. Int. Ed.
2003, 42, 4082–4085; f) J. Marco-Contelles, Angew. Chem., 2004, 16,
2248–2250; Angew. Chem. Int. Ed. 2004, 43, 2198–2200; g) S. Stecko,
B. Furman, M. Chmielewski, Tetrahedron 2014, 70, 7817–7844; h) M.
Chigrinova, D. A. MacKenzie, A. R. Sherratt, L. L. W. Cheung, J. P.
Pezacki, Molecules 2015, 20, 6959–6969; i) Y. Takayama, T. Ishii, H.
Ohmiya, T. Iwai, M. C. Schwarzer, S. Mori, T. Taniguchi, K. Monde, M.
Sawamura, Chem. Eur. J. 2017, 23, 8400–8404; j) T. Shu, L. Zhao, S.
Li, X.-Y. Chen, C. von Essen, K. Rissanen, D. Enders, Angew. Chem.
2018, 130, 11151–11154; Angew. Chem. Int. Ed. 2018, 57, 10985–
10988.
[7]
a) T. Kunieda, T. Nagamatsu, T. Higuchi, M. Hirobe, Tetrahedron Lett.
1988, 29, 2203–2205; b) C. Palomo, J. M. Aizpurua, R. Urchegui, M.
Iturburu, A. O. de Retana, C. Cuevas, J. Org. Chem. 1991, 56, 2244–
2247; c) J. Escalante, M. A. González-Tototzin, J. Aviña, O. Muñoz-
Muñiz, E. Juaristi, Tetrahedron 2001, 57, 1883–1890; d) M. A. Bonache,
G. Gerona-Navarro, M. Martín-Martínez, M. T. García-López, P. López,
C. Cativiela, R. González-Muñiz, Synlett 2003, 1007–1011; e) S.
Kanwar, S. D. Sharma, Bull. Chem. Soc. Jpn. 2006, 79, 1748–1752.
For selected recent reviews, see: a) R. Jazzar, J. Hitce, A. Renaudat, J.
Sofack-Kreutzer, O. Baudoin, Chem. Eur. J. 2010, 16, 2654–2672; b) O.
Baudoin, Chem. Soc. Rev. 2011, 40, 4902–4911; c) C. Zhang, C. Tang,
N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–3484; d) G. Rouquet, N.
Chatani, Angew. Chem. 2013, 125, 11942–11959; Angew. Chem. Int.
Ed. 2013, 52, 11726–11743; e) S. A. Girard, T. Knauber, C.-J. Li,
Angew. Chem. 2014, 126, 76–103; Angew. Chem. Int. Ed. 2014, 53,
74–100; f) C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173–6214; g) C.
Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015,
115, 12138–12204; h) A. Batra, P. Singh, K. N. Singh, Eur. J. Org.
Chem. 2016, 4927–4947; i) S.-R. Guo, P. S. Kumar, M. Yang, Adv.
Synth. Catal. 2017, 359, 2–25; j) M. K. Lakshman, P. K. Vuram, Chem.
Sci. 2017, 8, 5845–5888; k) B. V. Varun, J. Dhineshkumar, K. R.
Bettadapur, Y. Siddaraju, K. Alagiri, K. R. Prabhu, Tetrahedron Lett.
2017, 58, 803–824; l) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A.
K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016–9085; m) H. Sterckx, B.
Morel, B. U. W. Maes, Angew. Chem. 2019, 131, 8028–8055; Angew.
Chem. Int. Ed. 2019, 58, 7946–7970; n) Q. Zhang, B.-F. Shi, Chin. J.
Chem. 2019, 37, 647–656.
[8]
[13] a) K. Nozawa-Kumada, J. Kadokawa, T. Kameyama, Y. Kondo, Org.
Lett. 2015, 17, 4479–4481. Also see: b) K. Nozawa-Kumada, S. Kurosu,
M. Shigeno, Y. Kondo, Asian J. Org. Chem. 2019, 8, 1080–1083.
[14] In this reaction, the active Cu(I) species can be formed through the
disproportionation of Cu(II), see: a) A. E. King, L. M. Huffman, A.
Casitas, M. Costas, X. Ribas, S. S. Stahl, J. Am. Chem. Soc. 2010, 132,
12068–12073; b) B. Chen, X.-L. Hou, Y.-X. Li, Y.-D. Wu, J. Am. Chem.
Soc. 2011, 133, 7668–7671; c) W.-J. Yoo, T. Tsukamoto, S. Kobayashi,
Angew. Chem. Int. Ed. 2015, 54, 6587–6590; d) J. C. Vantourout, H. N.
Miras, A. Isidro-Llobet, S. Sproules, A. J. B. Watson, J. Am. Chem. Soc.
2017, 139, 4769–4779.
[9]
a) M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058–14059; b)
Q. Zhang, K. Chen, W. Rao, Y. Zhang, F.-J. Chen, B.-F. Shi, Angew.
Chem. 2013, 125, 13833–13837; Angew. Chem. Int. Ed. 2013, 52,
13588–13592; c) Z. Wang, J. Ni, Y. Kuninobu, M. Kanai, Angew. Chem.
2014, 126, 3564–3567; Angew. Chem. Int. Ed. 2014, 53, 3496–3499; d)
X. Wu, Y. Zhao, G. Zhang, H. Ge, Angew. Chem. 2014, 126, 3780–
3784; Angew. Chem. Int. Ed. 2014, 53, 3706–3710; e) X. Wu, Y. Zhao,
H. Ge, Chem. Eur. J. 2014, 20, 9530–9533; f) W.-W. Sun, P. Cao, R.-Q.
[15] 29% of 3-(4-methoxyphenyl)-N-phenyl-2-propenamide was obtained.
This article is protected by copyright. All rights reserved.