D. Gautam, B. Venkateswara Rao / Tetrahedron Letters 50 (2009) 1693–1695
1695
Tetrahedron Lett. 1998, 39, 8895; (c) Donohoe, T. J.; Fisher, J. W.; Edwards, P.
J. Org. Lett. 2004, 6, 465; (d) Koumbis, A. E.; Varvogli, A.-A. C. Synlett 2006, 19,
3340.
on intermediate 19 had taken place to give syn-bicyclic lactone 20
in 70% yield.13,14 The deprotection of the benzyl group in 20 using
H2, Pd/C gave 21, which was converted to its disilyl ether 22. The
bicyclic lactone formation helped not only in creating the tertiary
chiral centre, but also in selectively protecting the hyroxyls. The
reduction of 22 with DIBAL-H and one carbon homologation
yielded 23. The acylation of 23 with hexanoic anhydride gave ester
24. The RuO4-mediated oxidative cleavage of a double bond in 24
gave acid 25. Finally, the lactonization of 25 with trifluoroacetic
anhydride/trifluoroacetic acid and the subsequent deprotection of
more robust secondary OTBS with TBAF have been carried out in
one pot to give compound 3. The spectral and physical properties
9. (a) Ramu, E.; Rao, B. V. Tetrahedron: Asymmetry 2008, 19, 1820; (b) Gautam, D.;
Kumar, D. N.; Rao, B. V. Tetrahedron: Asymmetry 2006, 17, 819; (c) Ramu, E.;
Bhaskar, G.; Rao, B. V.; Ramanjaneyulu, G. S. Tetrahedron Lett. 2006, 47, 3401;
(d) Naveen Kumar, D.; Sudhakar, N.; Rao, B. V.; Kishore, K. H.; Murty, U. S.
Tetrahedron Lett. 2006, 47, 771; (e) Kumar, A. R.; Sudhakar, N.; Rao, B. V.;
Raghunandhan, N.; Venkatesh, A.; Sarangapani, M. Bioorg. Med. Chem. Lett.
2005, 15, 2085; (f) Sudhakar, N.; Kumar, A. R.; Prabhakar, A.; Jagadeesh, B.; Rao,
B. V. Tetrahedron Lett. 2005, 46, 325; (g) Naveen Kumar, D.; Rao, B. V.;
Ramajaneyulu, G. S. Tetrahedron: Asymmetry 2005, 16, 1611; (h) Naveen Kumar,
D.; Rao, B. V. Tetrahedron Lett. 2004, 45, 2227.
10. (a) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2008, 73, 2; (b) Bhaket, P.; Morris, K.;
Stauffer, C. S.; Datta, A. Org. Lett. 2005, 7, 875–876; (c) Prakash, K. R. C.; Rao, S.
P. Tetrahedron Lett. 1991, 32, 7473.
11. Naveen Kumar, D.; Rao, B. V. Tetrahedron Lett. 2004, 45, 7713.
12. The 1H NMR of the column-filtered product showed exclusive formation of Z-
isomer. Generally, the E-isomer of 14 undergoes spontaneous lactonization
upon deprotection of the TBDPS group. No lactonization of 14 was observed
upon deprotection of the TBDPS group, thus confirming the Z-isomer. Z-isomer
was further confirmed by the isolation of intermediate lactone 19 in 88% yield
prior to base-induced Michael addition.
of 3 are in good agreement with the reported values.7a
(c 0.275, CHCl3) lit.7a
+40.2 (c 1.1, CHCl3) (Scheme 2).
In conclusion, we have demonstrated the total synthesis of (+)-
secosyrin 1 (3) through a chiral pool strategy using -mannitol in a
½
a 2D6
+42.7
ꢁ
½ ꢁ
a 2D0
D
highly stereoselective fashion. The above-mentioned strategy is
useful in making related skeletons and analogues.
NMR data of compound 14: 1H NMR(300 MHz, CDCl3) d 1.09 (s, 9H), 1.16 (s, 3H),
1.27–1.37 (m, 12H), 3.65 (dd, J = 4.5 Hz, 9.1 Hz, 1H), 3.86–3.96 (m, 1H) 4.03–
4.23 (m, 4H), 4.25(d, J = 17.4 Hz, 1H), 4.46 (dd, J = 1.9 Hz, 17.4 Hz, 1H), 5.61 (d,
J = 9.1 Hz, 1H), 6.36 (s, 1H), 7.32–7.45 (m, 6H), 7.59–7.66 (m, 4H).
NMR data of compound 19: 1H NMR(400 MHz, CDCl3) d = 2.34 (br s, 1H), 2.77 (br
s, 1H), 3.81 (m, 2H), 4.03 (br s, 1H), 4.37, 4.43 (AB-q, J = 14.9 Hz, 2H), 4.59, 4.63
(AB-q, J = 11.8 Hz, 2H), 5.09 (s, 1H), 6.08 (d, J = 1.5 Hz, 1H), 7.28–7.43 (m, 5H).
Acknowledgements
D. Gautam thanks the CSIR, New Delhi, for a research fellow-
ship. The authors also thank Dr. J. S. Yadav, Dr. A. C. Kunwar and
Dr. T. K. Chakraborty for their help and encouragement.
13. Analytical data of compound 20: Colourless liquid, ½a D28
ꢁ
+8.4 (c 2.2, CHCl3);
IR(Neat) 3423, 2924, 2858, 1781, 1452, 1037 cmꢀ1 1H NMR(300 MHz, CDCl3) d
;
2.58 (s, 2H), 3.56, 3.74 (AB-q, J = 9.8 Hz, 2H), 3.63 (d, J = 10.9 Hz, 1H) 3.95–4.04
(m, 2H), 4.31 (d, J = 10.9 Hz, 1H), 4.56, 4.70 (AB-q, J = 11.7 Hz, 2H), 4.69 (s, 1H),
7.26–7.4 (m, 5H); 13C NMR(75 MHz, CDCl3): d 37.4, 71.1, 73.7, 74.1, 74.6, 87.2,
88.8, 127.8, 128.2, 128.5, 136.3, 174.2; ESIMS: 287 [M+Na]+; ESI-HRMS: calcd
for C14H16O5Na [M+Na]+ = 287.0895, found: 287.0899.
Supplementary data
Supplementary data associated with this article can be found, in
14. (a) In batches of around 1 g (2.9 mmol) of 18, about 4% of diastereomeric 26
was also isolated and its structure was confirmed by its 1H NMR coupling
constants and NOE experiment. Compound 26 showed a coupling constant of
4.9 Hz for H4 and H5 protons (due to syn orientation), which was further
confirmed by the NOE between H4 and H7 protons and H4 and H5 protons
(due to the syn orientation of protons), thus confirming the compound 26. No
compound with trans ring junction was isolated.
References and notes
1. Schroder, F. Angew. Chem., Int. Ed. 1998, 37, 1213.
2. (a) Smith, M. J.; Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.; Burton, V.;
Stayton, M. M. Tetrahedron Lett. 1993, 34, 223; (b) Midland, S. L.; Keen, N. T.;
Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.; Smith, M. J.; Mazzola, E.
P.; Graham, K. J.; Clardy, J. J. Org. Chem. 1993, 58, 2940.
3. (a) Keen, N. T.; Tamaki, S.; Kobayashi, D.; Gerhold, D.; Stayton, M. M.; Shen, H.;
Gold, S.; Lorang, J.; Thordal-Christensen, H.; Dahlbeck, D.; Staskawicz, B. Mol.
Plant Microbe Interact. 1990, 3, 112; (b) Keen, N. T.; Buzzell, R. I. Theor. Appl.
Genet. 1991, 81, 133.
O
O
1
NOE
O
O
2
4
H4
H5
HO
NOE
OBn
H7
H7
3
5
7
HO
O
O
4. Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1995, 60, 1118.
5. Selected publications: (a) Atkinson, M. M.; Midland, S. L.; Sims, J. J.; Keen, N. T.
Plant Physiol. 1996, 112, 297; (b) Tsurushima, T.; Midland, S. L.; Zeng, C.-M.; Ji,
C.; Sims, J. J.; Keen, N. T. Phytochemistry 1996, 43, 1219; (c) Ji, C.; Okinaka, Y.;
Takeuchi, Y.; Tsurushima, T.; Buzzell, R. I.; Sims, J. J.; Midland, S. L.; Slaymaker,
D.; Yoshikawa, M.; Yamaoka, N.; Keen, N. T. Plant Cell 1997, 9, 1425; (d) Ji, C.;
Boyd, C.; Slaymaker, D.; Okinaka, Y.; Takeuchi, Y.; Midland, S. L.; Sims, J. J.;
Herman, E.; Keen, N. T. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3306; (e)
Tsurushima, T.; Ji, C.; Okinaka, Y.; Takeuchi, Y.; Sims, J. J.; Midland, S. L.;
Yoshikawa, M.; Yamaoka, N.; Keen, N. T. Dev. Plant Pathol. 1998, 13, 139; (f)
Slaymaker, D. H.; Keen, N. T. Plant Sci. 2004, 166, 387.
6. (a) Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama, O.
Tetrahedron Lett. 1995, 36, 3201; (b) Kuwahara, S.; Moriguchi, M.; Miyagawa,
K.; Konno, M.; Kodama, O. Tetrahedron 1995, 51, 8809; (c) Wood, J. L.; Jeong, S.;
Salcedo, A.; Jenkins, J. J. Org. Chem. 1995, 60, 286; (d) Honda, T.; Mizutani, H.;
Kanai, K. J. Org. Chem. 1996, 61, 9374; (e) Henschke, J. P.; Rickards, R. W.
Tetrahedron Lett. 1996, 37, 3557; (f) Ishihara, J.; Ugimoto, T.; Murai, A. Synlett
1996, 335; (g) Zeng, C.-M.; Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem.
1997, 62, 4780; (h) Yoda, H.; Kawauchi, M.; Takabe, K.; Ken, H. Heterocycles
1997, 45, 1895; (i) Ishihara, J.; Sugimoto, T.; Murai, A. Tetrahedron 1997, 53,
16029; (j) Yu, P.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. Tetrahedron 1998,
54, 1783; (k) Di Florio, R.; Rizzacasa, M. A. Austr. J. Chem. 2000, 53, 327; (l)
Chenevert, R.; Dasser, M. Can. J. Chem. 2000, 78, 275; (m) Chenevert, R.; Dasser,
M. J. Org. Chem. 2000, 65, 4529.
6
OBn
26
26
Compound 26 formation can be explained by the epimerization of intermediate 19 to
28 via oxy-furan intermediate 27 followed by Michael addition of 28.
O-
O
O
H
O
h
HO
HO
18
HO
HO
H+
OBn
O
OBn
19
27
Michael
addition
O
HO
HO
26
OBn
7. (a) Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong, H. N. C. J. Org. Chem. 1997,
62, 6359; (b) Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org.
Chem. 1997, 62, 8095; (c) Yoda, H.; Kawauchi, M.; Takabe, K.; Hosoya, K.
Heterocycles 1997, 45, 1903; (d) Krishna, P. R.; Narsingam, M.; Kannan, V.
Tetrahedron Lett. 2004, 45, 4773; (e) Wong, H. N. C. Pure Appl. Chem. 1996, 68,
335.
28
(b) Analytical data of compound 26: White solid, mp 85 °C, ½a D28
ꢀ1.5 (c 0.65, CHCl3);
ꢁ
IR(Neat) 3446, 1776, 1636, 1075 cmꢀ1 1H NMR(300 MHz, CDCl3) d 2.69, 2.82 (AB-q,
;
J = 18.5 Hz, 2H) 3.50, 3.54 (AB-q, J = 10.2 Hz, 2H), 3.70 (dd, J = 7.2 Hz, 9.4 Hz, 1H),
4.12 (dd, J = 6.0 Hz, 9.4 Hz, 1H), 4.41–4.50 (m, 1H) 4.54, 4.60 (AB-q, J = 11.7 Hz, 2H),
4.81 (d, J = 4.9 Hz), 7.27–7.41 (m, 5H); 13C NMR(75 MHz, CDCl3): d 38.5, 71.2, 71.6,
71.6, 73.6, 83.6, 86.5, 127.7, 128.1, 128.6, 137.2, 174.8; ESIMS: 287 [M+Na]+.
8. (a) Mukai, C.; Moharram, S. M.; Hanaoka, M. Tetrahedron Lett. 1997, 38, 2511;
(b) Carda, M.; Castillo, E.; Rodriguez, S.; Falomir, E.; Alberto Marco, J.