0.500 mmol) and 24a (277 mg, 0.500 mmol) in dry DMF (15
mL) at room temperature over 5 h using a syringe pump. The
reaction mixture was stirred for a further 40 h at room
temperature. After the solvent was removed under reduced
pressure, to the resulting residue was added distilled water (30
mL), and the mixture was extracted with CHCl3 (3 Â 30 mL).
The organic layer was combined, washed with distilled water
(2 Â 40 mL) and brine (1 Â 40 mL), dried over MgSO4 and
filtered. After the solvent was removed under reduced pres-
sure, the residue was purified by chromatography (DCM) to
yield 9a (0.14 g, 37%) as a light yellow powder: mp 4290 1C
(m, 2H); 13C NMR d 14.2, 19.6, 21.8, 32.7, 46.3, 74.8, 122.7,
125.0, 125.3, 128.0, 130.0, 130.3, 133.8, 143.8, 149.1; (+)-
APCI MS m/z (%) 935.4 (M+, 100), calc.: 935.3 for
C54H66N2O8S2.
Acknowledgements
This research was supported by the Natural Sciences and
Research Council of Canada (NSERC) and the Department
of Chemistry, Memorial University of Newfoundland.
1
(CHCl3–acetone) (decomp.); H NMR d 2.56 (s, 3H), 3.64 (s,
References
6H), 4.19 (d, J = 13.5 Hz, 2H), 5.29 (d, J = 13.5 Hz, 2H),
7.01–7.03 (m, 2H), 7.49 (d, J = 7.5 Hz, 2H), 7.94 (d, J = 7.5
Hz, 2H), 8.05–8.08 (m, 2H); 13C NMR d 21.9, 45.9, 63.1,
123.0, 125.3, 125.4, 128.1, 130.3, 130.5, 134.5, 144.1, 150.0;
(+)-APCI MS m/z (%) 767.0 (M+, 100), calc.: 766.9 for
C42H42N2O8S2.
1. (a) C. D. Gutsche, Calixarenes Revisited, in Supramolecular
Chemistry, ed. J. F. Stoddard, Royal Society of Chemistry, Cam-
bridge, UK, 1998, pp. 25 and 26; (b) Calixarenes 2001, ed. Z Afari,
V Bohmer, J Harrowfield and J Vicens, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2001, pp. 245–249, and refer-
ences cited therein; (c) P. Chirakul, P. D. Hampton and
E. N. Duesler, Tetrahedron Lett., 1998, 39, 5473–5476;
(d) H. Takemura, J. Inclusion Phenom. Mol. Recognit. Chem.,
1994, 19, 193–206; (e) H. Takemura, J. Inclusion Phenom. Macro-
cycl. Chem., 2002, 42, 169–186.
Bis(N-tosylamide)azaisocalix[2]-2,3-diethoxynaphthalene (9b)
Using the general procedure for 9a, the coupling reaction
between 13b (0.20 g, 0.50 mmol) and 24b (0.29 g, 0.50 mmol)
gave the crude product, which was purified by chromatogra-
phy (DCM) to yield 9b (0.12 g, 29%) as a light yellow powder:
mp 4260 1C (CHCl3–acetone) (decomp.); 1H NMR d 1.18 (t,
J = 7.3 Hz, 6H), 2.55 (s, 3H), 3.69–3.75 (m, 2H), 3.87–3.92 (m,
2H), 4.13 (d, J = 13.5 Hz, 2H), 5.24 (d, J = 13.5 Hz, 2H),
8.99–7.00 (m, 2H), 7.49 (d, J = 7.2 Hz, 2H), 7.93 (d, J = 8.0
Hz, 2H), 7.99–8.01 (m, 2H); 13C NMR d 15.7, 21.9, 46.4, 70.6,
122.8, 125.0, 125.3, 128.1, 130.0, 130.3, 134.1, 144.0, 148.9;
(+)-APCI MS m/z (%) 823.3 (M+, 100), calc.: 823.0 for
C46H50N2O8S2.
2. (a) P. D. Hampton, W. D. Tong, S. Wu and E. N. Duesler,
J. Chem. Soc., Perkin Trans. 2, 1996, 1127–1130; (b) P. Chiraku,
P. D. Hampton and Z. Bencze, J. Org. Chem., 2000, 65,
8297–8300.
3. (a) P. Thuery, M. Nierlich, J. Vicens, B. Masci and H. Takemura,
Eur. J. Inorg. Chem., 2001, 12, 637–643; (b) P. Thuery,
M. Nierlich, J. Vicens, B. Masci and H. Takemura, Polyhedron,
2001, 20, 3183–3187.
4. M. J. Grannas, B. F. Hoskins and R. Robson, Inorg. Chem., 1994,
33, 1071–1079.
5. P. Thuery, M. Nierlich, J. Vicens, B. Masci and H. Takemura,
J. Chem. Soc., Dalton Trans., 2000, 279–283.
6. P. Thuery, M. Nierlich, J. Vicens, B. Masci and H. Takemura,
Polyhedron, 2000, 19, 2673–2678.
7. K. Ito, T. Ohta, Y. Ohba and T. Sone, J. Heterocycl. Chem., 2000,
37, 79–85.
8. A. Tanaka, S. Fujiyoshi, K. Motomura, O. Hayashida,
Y. Hisaeda and Y. Murakami, Tetrahedron, 1998, 54, 5178–5206.
9. K. Niikura and E. V. Anslyn, J. Chem. Soc., Perkin Trans. 2, 1999,
2769–2775.
10. (a) M. Bell, A. J. Edwards, B. F. Hoskins, E. H. Kachab and
R. Robson, J. Am. Chem. Soc., 1989, 111, 3603–3610;
(b) A. J. Edwards, B. F. Hoskins, E. H. Kachab,
A. Markiewicz, K. S. Murray and R. Robson, Inorg. Chem.,
1992, 31, 3585–3591.
11. (a) H. Takemura, K. Yoshimura, I. U. Khan, T. Shinmyozu and
T. Inazu, Tetrahedron Lett., 1992, 33, 5775–5778; (b) I. U. Khan,
H. Takemura, M. Suenaga, T. Shinmyozu and T. Inazu, J. Org.
Chem., 1993, 58, 3158–3161; (c) H. Takemura, M. Suenaga,
K. Sakai, T. Shinmyozu, Y. Miyahara and T. Inazu, J. Inclusion
Phenom., 1984, 2, 207–214; (d) H. Takemura, T. Shinmyozu,
H. Miura, I. U. Khan and T. Inazu, J. Inclusion Phenom., 1994,
19, 193–206; (e) G. Wen, M. Matsunaga, T. Matsunaga,
H. Takemura and T. Shinmyozu, Synlett, 1995, 947–948.
12. A. H. Tran, D. O. Miller and P. E. Georghiou, J. Org. Chem.,
2005, 70, 1115–1121.
Bis(N-tosylamide)azaisocalix[2]-2,3-dipropoxynaphthalene (9c)
Using the general procedure for 9a, the coupling reaction
between 13c (0.21 mg, 0.50 mmol) and 24c (0.31 g, 0.50 mmol)
gave the crude product, which was purified by chromatogra-
phy (DCM) to give 9c (0.21 g, 48%) as a colourless powder:
mp 4280 1C (CHCl3–CH3CN) (decomp.); 1H NMR d 0.88 (t,
J = 7.5 Hz, 6H), 1.55–1.65 (m, 4H), 2.53 (s, 3H), 3.50–3.55 (m,
2H), 3.79–3.83 (m, 2H), 4.11 (d, J = 13.4 Hz, 2H), 5.23 (d,
J = 13.4 Hz, 2H), 6.99–7.01 (m, 2H), 7.47 (d, J = 8.8 Hz, 2H),
7.92 (d, J = 8.1 Hz, 2H), 7.97–7.99 (m, 2H); 13C NMR d 10.7,
21.8, 23.7, 46.3, 76.6, 122.7, 125.0, 125.3, 128.0, 129.9, 130.3,
133.8, 143.9, 149.0; (+)-APCI MS m/z (%) 879.5 (M+, 100),
calc.: 879.1 for C50H58N2O8S2.
Bis(N-tosylamide)azaisocalix[2]-2,3-dibutoxynaphthalene (9d)
13. A. H. Tran and P. E. Georghiou, New J. Chem., 2007, 31,
921–926.
14. G. P. Crowther, R. J. Sundberg and A. M. Sarpeshkar, J. Org.
Chem., 1984, 49, 4657–4663.
15. N. Kunhert, G. M. Rossignolo and A. Lopez-Periago, Org.
Biomol. Chem., 2003, 1, 1157–1170.
16. (a) The simple routes to 1,4-diformyl-2,3-dimethoxynaphthalene
and 1,4-diformyl-2,3-dihydroxynaphthalene were both presented
at ‘‘ISNA-11: 11th International Symposium on Novel Aromatic
Compounds’’, St. John’s, NL, Canada, August 14–18th, 2005. For
an application of these conditions see; (b) A. J. Gallant, M. Yun,
M. Sauer, M. C. S. Yeung and M. J. MacLachlan, Org. Lett.,
2005, 7, 4827–4830.
Using the general procedure for 9a, the coupling reaction
between 13d (0.23 g, 0.50 mmol) and 24d (0.32 g, 0.50 mmol)
gave the crude product, which was purified by chromatogra-
phy (1 : 9 EtOAc–hexane) to yield 9d (0.15 g, 31%) as a
colourless powder: mp 4290 1C (CHCl3–CH3CN) (decomp.);
1H NMR d 0.89 (t, J = 7.3 Hz, 6H), 1.26–1.34 (m, 2H),
1.36–1.43 (m, 2H) 1.47–1.52 (m, 2H), 1.55–1.62 (m, 2H), 2.54
(s, 3H), 3.52–3.57 (m, 2H), 3.81–3.85 (m, 2H), 4.09 (d, J =
13.3 Hz, 2H), 5.23 (d, J = 13.7 Hz, 2H), 6.99–7.01 (m, 2H),
7.48 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 7.9 Hz, 2H), 7.98–8.00
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2008 New J. Chem., 2008, 32, 1175–1182 | 1181