heterocyclic scaffolds, especially those with polyfunctional
groups, is an important task for further studies.
Direct Synthesis of Polyfunctionalized
Unsaturated δ-Lactones and δ-Lactams from
r-Alkenoyl r-Carboxyl/Carbamoyl Ketene
S,S-Acetals under Vilsmeier Conditions
Functionalized ketene S,S-acetals are versatile intermediates
in organic synthesis.3,4 During the course of our studies in this
context,5-9 we found that the readily available R-alkenoyl ketene
S,S-acetals showed fascinating structural features as novel
intermediates for their dense substitution patterns and flexible
alkylthio functionality able to play multiple roles. A number of
annulation strategies based on them have been developed in
our group for the synthesis of various carbo- and heterocyclic
compounds, such as the [5 + 1] annulations for phenols6a and
pyrrolizidines,6e the domino reaction for fused tetraheterocyclic
compounds,7 and the three-component [4 + 2] cycloaddition
for cyclohexanones.8 In addition, tetronic acid,9a tetramic acid,9b
and thiophene derivatives9c were synthesized with R-alkenoyl
R-carboxyl/carbamoyl ketene S,S-acetals as starting materials
through intramolecular oxa/aza/thia-anti-Michael addition reac-
tions, respectively. However, in comparison, the direct intramo-
lecular oxa/aza-Michael addition of either R-alkenoyl R-carboxyl
or R-alkenoyl R-carbamoyl ketene S,S-acetals leading to the
correspondingsix-memberedheterocycleshasnotbeenestablished9,10
due to decarboxylation of the former under both basic and acidic
conditions9a,10a and competition of the aza/thia-anti-Michael
additions of the latter under basic conditions.9b,c Very recently,
as an alternative route, a one-pot synthesis of functionalized
unsaturated δ-lactones via reduction-lactonizations of R-alk-
enoyl R-carboxyl ketene S,S-acetals has been reported by us.11
As part of a continuing interest in solving the problems in the
synthesis of the corresponding six-membered heterocycles
starting directly from the easily available R-alkenoyl R-carboxyl
Jun Liu,† Mang Wang,*,†,‡ Feng Han,† Yingjie Liu,† and
Qun Liu*,†
Department of Chemistry, Northeast Normal UniVersity,
Changchun, 130024, China, and State Key Laboratory of
Fine Chemicals, Dalian UniVersity of Technology,
Dalian, 116012, China
ReceiVed March 30, 2009
An efficient method for direct synthesis of polyfunctionalized
unsaturated δ-lactones 2 and δ-lactams 4 has been developed
from the reaction of the easily available R-alkenoyl R-car-
boxyl/carbamoyl ketene S,S-acetals 1/3 and Vilsmeier re-
agents (DMF/POCl3 or DMF/PBr3) via a cyclization followed
by a halovinylation or haloformylation sequence.
(3) For reviews, see: (a) Dieter, R. K. Tetrahedron 1986, 42, 3029. (b)
Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5423.
(4) For selected recent reports, see: (a) Joseph, B. K.; Verghese, B.;
Sudarsanakumar, C.; Deepa, S.; Viswam, D.; Chandran, P.; Asokan, C. V. Chem.
Commun. 2002, 736. (b) Panda, K.; Suresh, J. R.; Ila, H.; Junjappa, H. J. Org.
Chem. 2003, 68, 3498. (c) Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa,
H. J. Org. Chem. 2005, 70, 10030. (d) Rao, H. S. P.; Sivakumar, S. J. Org.
Chem. 2006, 71, 8715. (e) Yu, H.; Yu, Z. Angew. Chem., Int. Ed. 2009, 48,
2929.
(5) (a) Yin, Y.; Wang, M.; Liu, Q.; Hu, J.; Sun, S.; Kang, J. Tetrahedron
Lett. 2005, 46, 4399. (b) Fu, Z.; Wang, M.; Ma, Y.; Liu, Q.; Liu, J. J. Org.
Chem. 2008, 73, 7625. (c) Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q. AdV. Synth.
Catal. 2009, 351, 112.
(6) For [5 + 1] annulations, see: (a) Bi, X.; Dong, D.; Liu, Q.; Pan, W.;
Zhao, L.; Li, B. J. Am. Chem. Soc. 2005, 127, 4578. (b) Dong, D.; Bi, X.; Liu,
Q.; Cong, F. Chem. Commun. 2005, 3580. (c) Bi, X.; Dong, D.; Li, Y.; Liu, Q.;
Zhang, Q. J. Org. Chem. 2005, 70, 10886. (d) Hu, J.; Zhang, Q.; Yuan, H.; Liu,
Q. J. Org. Chem. 2008, 73, 2442. (e) Tan, J.; Xu, X.; Zhang, L.; Li, Y.; Liu, Q.
Angew. Chem., Int. Ed. 2009, 48, 2868. (f) Zhang, L.; Liang, F.; Cheng, X.;
Liu, Q. J. Org. Chem. 2009, 74, 899.
The core structures of δ-lactones and δ-lactams exist in a
large number of natural and unnatural pharmaceutically and
biologically important compounds.1 General methods for their
synthesis involve cyclization of appropriately substituted open
chain precursors.2 However, many of these methods are limited
in their use by a relatively narrow scope of substrates, harsh
reaction conditions, multiple steps, or the use of not easily
available starting materials. Therefore, the development of an
efficient synthetic approach for the construction of these
† Northeast Normal University.
‡ Dalian University of Technology.
(1) (a) Haynes, L. J. Q. ReV. Chem. Soc. 1948, 2, 46. (b) Davies-Coleman,
M. T.; Rivett, D. E. A. In Progress in the Chemistry of Organic Natural Products;
Zechmeister, L., Ed.; Springer-Verlag: New York, 1989; Vol. 55, p 1. (c) Nangia,
A.; Prasuna, G.; Rao, P. B. Tetrahedron 1997, 53, 14507. (d) De Lucca, G. V.
Bioorg. Med. Chem. Lett. 1997, 7, 501.
(2) For selective examples on the synthesis of δ-lactones, see: (a) Pa`mies,
O.; Ba¨ckvall, J.-E. J. Org. Chem. 2002, 67, 1261. (b) Andreana, P. R.; McLellan,
J. S.; Chen, Y.; Wang, P. G. Org. Lett. 2002, 4, 3875. (c) Dong, C.; Alper, H.
J. Org. Chem. 2004, 69, 5011. (d) Baza´n-Tejeda, B.; Bluet, G.; Broustal, G.;
Campagne, J.-M. Chem.sEur. J. 2006, 12, 8358. For selective examples on the
synthesis of δ-lactams, see: (e) Sainte, F.; Serckx-Poncin, B.; Hesbain-Frisque,
A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 1428. (f) Padwa, A.; Heidelbaugh,
T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65, 2368. (g) Yamamoto, Y.; Takagishi,
H.; Itoh, K. Org. Lett. 2001, 3, 2117. (h) Gibson, K. R.; Hitzel, L.; Mortishire-
Smith, R. J.; Gerhard, U.; Jelley, R. A.; Reeve, A. J.; Rowley, M.; Nadin, A.;
Owens, A. P. J. Org. Chem. 2002, 67, 9354. (i) Godineau, E.; Landais, Y. J. Am.
Chem. Soc. 2007, 129, 12662.
(7) For the domino reaction, see: Liang, F.; Zhang, J.; Tan, J.; Liu, Q. AdV.
Synth. Catal. 2006, 348, 1986.
(8) For the multicomponent reaction, see: Ma, Y.; Wang, M.; Li, D.;
Bekturhun, B.; Liu, J.; Liu, Q. J. Org. Chem. 2009, 74, 3166.
(9) For intramolecular anti-Michael additions, see: (a) Bi, X. H.; Liu, Q.;
Sun, S. G.; Liu, J.; Pan, W.; Zhao, L.; Dong, D. W. Synlett 2005, 49. (b) Li, Y.;
Liang, F.; Bi, X.; Liu, Q. J. Org. Chem. 2006, 71, 8006. (c) Bi, X.; Zhang, J.;
Liu, Q.; Tan, J.; Li, B. AdV. Synth. Catal. 2007, 349, 2301.
(10) (a) Choi, E. B.; Youn, I. K.; Pak, C. S. Synthesis 1991, 15. For a one-
pot synthesis of substituted pyridine-2,4(1H,3H)-diones from the reaction of
acyl(carbamoyl)ketene S,S-acetals with N,N-dimethylformamide dimethyl acetal,
see: (b) Li, Y.; Li, W.; Zhang, R.; Zhou, Y.; Dong, D. Synthesis 2008, 3411.
For synthesis of dihydropyranones from the reaction of R-acetyl ketene S,S-
acetals with aldehydes, see: (c) Ouyang, Y.; Huang, J.; Pan, W.; Liang, Y.; Yang,
Y.; Dong, D. W. Eur. J. Org. Chem. 2009, 2003.
(11) For reduction-lactonization, see: Liu, J.; Wang, M.; Li, B.; Liu, Q.;
Zhao, Y. J. Org. Chem. 2007, 72, 4401.
5090 J. Org. Chem. 2009, 74, 5090–5092
10.1021/jo900663z CCC: $40.75 2009 American Chemical Society
Published on Web 05/21/2009