Article
Organometallics, Vol. 28, No. 15, 2009 4289
backbones have been shown to be good members to design a
variety of assemblies with potential applications in optical
electronics.7 Detection of trace analyte is a central challenge
in the field of chemical sensors. For security reasons atten-
tion has been paid recently to discovering suitable sensors for
nitroaromatic explosives (DNT, TNT). However, polyace-
tylenes and other conjugated organic polymers are the
commonly studied materials as sensors for these explosives.
The possibility of conjugated metal-organic discrete
assemblies of finite shapes and sizes as sensors for nitroaro-
matics needs to be explored. Recently, we have used a new
Pt3 organometallic acceptor, 4,40,400-tris[ethynyl-trans-Pt-
(PEt3)2(NO3)]triphenylamine (1a), containing Pt-ethynyl
functionality to construct a fluorescent trigonal prism (3a)
in combination with an organic “clip”.8 Interestingly, the
solution fluorescence of 3a was quenched efficiently by
adding nitroaromatics, which are the chemical signatures
of many explosives. Here, we report the synthesis of a
new trigonal prism (3b) from 1a using an ethynyl-con-
taining donor clip, 1,3-bis(3-pyridylethynyl)benzene9 (2b)
(Scheme 1). A complementary approach has also been used
to prepare a prism (3c) from an organic tritopic planar
donor, 4,40,400-tris(4-pyridylethynyl)triphenylamine (2c), in
combination with an organometallic Pt2-clip (1b) containing
an ethynyl functionality (Scheme 1). In addition, we report
here the synthesis of a new tripodal Pt3-organometallic
acceptor, 4,40,400-tris[ethynyl-trans-Pt(PEt3)2(NO3)]triphe-
nylethane (1c), and its [2 þ 3] self-assembled prismatic
derivative (3d) by assembling with a conjugated organic clip,
[1,8-bis(4-pyridylethynyl)anthracene] (2d) (Scheme 2). All
four supramolecular prisms (3a-d) show luminescent beha-
vior due to the presence of a Pt-ethynyl functionality and
conjugated π-electrons. The solution state fluorescence of
molecular prisms 3a, 3c, and 3d is gradually quenched upon
addition of TNT. In the case of 3d, a spin-cast film prepared
by spin coating of a DMF solution of 3d over quartz shows
fluorescent quenching on exposure to TNT vapor.
Results and Discussion
Synthesis of the Linkers. Halogenated aromatic com-
pounds are an adequate choice as starting materials in self-
assembly because a large number of acceptors/donors can
easily be synthesized starting from these compounds.10 The
acceptor 1a was prepared from tris(4-bromophenyl)amine as
a halogenated aromatic compound using the procedure
discussed in our recent communication.8 In a similar way,
1,8-dichloroanthracene was used as the starting material to
obtain 1,8-diethynylanthracene followed by treatment with
an excess of trans-Pt(PEt3)2I2 and subsequent nitration with
AgNO3 to synthesize 1b. The carbon-centered new tripodal
acceptor 1c was prepared from 1,1,1-tris(4-iodophenyl)-
ethane, which was prepared according to the litera-
ture procedure.11 Coupling of trimethylsilylacetylene
(Me3SiCCH) with 1,1,1-tris(4-iodophenyl)ethane followed
by desilylation gives the ethynyl-incorporated compound
1,1,1-tris(4-ethynylphenyl)ethane (Scheme 3). Treatment
of 1,1,1-tris(4-ethynylphenyl)ethane with 4 equiv of trans-
(PEt3)2PtI2 in the presence of CuI catalyst in dry Et2NH
medium at room temperature overnight produced the
iodo derivative 1,1,1-tris [4-(trans-Pt(PEt3)2I)ethynylphe-
nyl]ethane, which was separated by column chromatography
and isolated in yellow microcrystalline form. The trinitrate
derivative 1c was synthesized from the iodide derivative
upon treatment with 3 equiv of AgNO3 at room temperature
with an isolated yield of 88%.
(5) (a) Das, N.; Mukherjee, P. S.; Arif, A. M.; Stang, P. J. J. Am.
Chem. Soc. 2003, 125, 13950. (b) Das, N.; Stang, P. J.; Arif, A. M.;
Champana, C. F. J. Org. Chem. 2005, 70, 10440. (C) Das, N.; Ghsosh, A.;
Singh, O. M.; Stang, P. J. Org. Lett. 2005, 8, 1701.
(6) (a) Kawamichi, T.; Kodama, T.; Kawano, M.; Fujita, M. Angew.
Chem., Int. Ed. 2008, 47, 8030. (b) Nakabayashi, K.; Ozaki, Y.; Kawano, M.;
Fujita, M. Angew. Chem., Int. Ed. 2008, 47, 2046. (c) Ghosh, S.; Chakra-
barty, R.; Mukherjee, P. S. Inorg. Chem. 2009, 48, 549. (d) Bar, A. K.;
Chakrabarty, R.; Mostafa, G.; Mukherjee, P. S. Angew. Chem., Int. Ed. 2008,
47, 8455. (e) Ghosh, S.; Mukherjee, P. S. J. Org. Chem. 2006, 71, 8412. (f)
Mukherjee, P. S.; Min, K. S.; Arif, A. M.; Stang, P. J. Inorg. Chem. 2004, 43,
6345. (g) Naddo, T.; Che, Y.; Zhang, W.; Balakrishnan, K.; Yang, X.; Yen, M.;
Zhao, J.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2007, 129, 6978. (h)
Ghoshal, D.; Zangrando, E.; Mallah, T.; Chaudhuri, N. R. Eur. J. Inorg.
Chem. 2004, 4675. (i) Saalfrank, R. W.; Maid, H.; Scheurer, A. Angew.
Chem., Int. Ed. 2008, 47, 8794. (j) Jeong, K. S.; Kim, S. Y.; Shin, U.-S.;
Kogej, M.; Hai, N. T. M.; Broekmann, P.; Jeong, N.; Kirchner, B.; Reiher, M.;
Schalley, C. A. J. Am. Chem. Soc. 2005, 127, 17672. (k) Rang, A.; Nieger,
M.; Engeser, M.; L€utzen, A.; Schalley, C. A. Chem. Commun. 2008, 4789.
(7) (a) Yam, V. W-W.; Tao, C.-H.; Zhang, L.; Wong, K. M-C.;
Cheung, K.-K. Organometallics 2001, 20, 453. (b) Sacksteder, L.; Baralt,
E.; DeGraff, B. A.; Lukehart, C. M.; Demas, J. N. Inorg. Chem. 1991, 30,
2468. (c) Yam, V. W. W.; Chan, L. P.; Lai, T. F. Organometallics 1993, 12,
2197. (d) Yam, V. W. W.; Yeung, P. K. Y.; Chan, L. P.; Kwok, W. M.; Phillips,
D. L.; Yu, K. L.; Wong, R. W. K.; Yan, H.; Meng, Q. J. Organometallics
1998, 17, 2590. (e) Yam, V. W. W.; Yu, K. L.; Cheung, K. K. J. Chem. Soc.,
Dalton Trans. 1999, 2913. (f) Choi, C. L.; Cheng, Y. F.; Yip, C.; Phillips, D.
L.; Yam, V. W. W. Organometallics 2000, 19, 3192. (g) Chan, C. W.; Cheng,
L. K.; Che, C. M. Coord. Chem. Rev. 1994, 132, 87. (h) Hissler, M.;
Connick, W. B.; Geiger, D. K.; McGarrah, J. E.; Lipa, D.; Lachicotte, R. J.;
Eisenberg, R. Inorg. Chem. 2000, 39, 447. (i) Khan, M. S.; Kakkar, A. K.;
Long, N. J.; Lewis, J.; Raithby, P.; Nguyen, P.; Marder, T. B.; Wittmann, F.;
1
The H and 31P{1H} NMR spectra as shown in Figure 1
indicate the formation of a symmetric tritopic linker, 1c. The
appearance of a single peak in the 31P{1H} NMR along with
concomitant 195Pt satellites indicated the formation of a
single product as well. Finally, the actual composition of
1c was confirmed by the appearance of peaks at m/z=1807.5
and 1274 in the ESI mass spectrum, corresponding to the
molecular ion [M þ Hþ] and [M - 4PEt3 - NO-3 ]þ fragment,
respectively (Supporting Information).
All four donors 2a-d were synthesized using reported
procedures.8,9,11,12 1a and 1b were fully characterized by
multinuclear NMR, ESI mass spectrometry, and single-
crystal X-ray diffraction study.8,6c Several efforts to obtain
good-quality single crystals of 1c were unsuccessful, and only
a very tiny amount of crystalline material was obtained.
Although it was possible to determine the cell dimensions
˚
(crystal system, cubic; space group, Pa3; a = 25.4754(5) A;
R=90°) of 1c from a diffraction study, a full set of data could
€
Friend, R. H. J. Mater. Chem. 1994, 4, 1227. (j) Chawdhury, N.; Kohler, A.;
Friend, R. H.; Younus, M.; Long, N. J.; Raithby, P. R.; Lewis, J. Macro-
(10) (a) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc.
2001, 123, 9634. (b) Yam, V. W-W.; Zhang, L.; Tao, C.-H.; Wong, K. M-C.;
Cheung, K.-K. Dalton Trans. 2001, 1111. (c) Kuehl, C. J.; Tabellion, F.; Arif,
A. M.; Stang, P. J. Organometallics 2001, 20, 1956. (d) Crowley, J. D.;
Goshe, A. J.; Bosnich, B. Chem. Commun. 2003, 2824.
(11) Kryschenko, Y. K.; Seidel, R. S.; Muddiman, D. C.; Nepomu-
ceno, A. I.; Stang, P. J. J. Am. Chem. Soc. 2003, 125, 9647.
(12) Bhaskar, A.; Ramakrishna, G.; Lu, Z.; Twieg, R.; Hales, J. M.;
Hagan, D. J.; Stryland, E. V.; Goodson, T. J. Am. Chem. Soc. 2006, 128,
11840.
€
molecules 1998, 32, 722. (k) Chawdhury, N.; Kohler, A.; Friend, R. H.;
Wong, W. Y.; Lewis, J.; Younus, M.; Raithby, P. R.; Corcoran, T. C.; Al-
Mandhary, M. R. A.; Khan, M. S. J. Chem. Phys. 1999, 110, 4963. (l)
Grosshenny, V.; Harriman, A.; Hissler, M.; Ziessel, R. J. Chem. Soc.,
Faraday Trans. 1996, 92, 2223. (m) Ziessel, R.; Hissler, M.; El-ghayoury,
A.; Harriman, A. Coord. Chem. Rev. 1998, 178-180, 1251.
(8) (a) Ghosh, S.; Mukherjee, P. S. Organometallics 2008, 27, 316.
(9) Schultheiss, N.; Ellsworths, J. M.; Bosch, E.; Barnes, C. L. Eur. J.
Inorg. Chem. 2005, 45.