C O M M U N I C A T I O N S
two similar globular domains which are linked by two peptide
hinges.17 The X-ray crystal structure of QBP shows that the deep
cleft formed between the two domains contains the glutamine
binding site, and glutamine binding causes a significant conforma-
tional change.17 To incorporate Anap into QBP, an amber nonsense
codon was substituted for Asn160,18 which lies in the cleft between
the two domains. Expression and purification of the amber mutant
Acknowledgment. We thank Dr. Lei Wang for providing
plasmids for protein expression. We are grateful to the NIH
GM62159 and the Skaggs Institute for Chemical Biology for support
of this work.
Supporting Information Available: Materials and methods. This
of QBP containing a C-terminal His6 tag (QBP-160TAG) was
References
Leu
carried out in the presence of the evolved tRNA /Anap-2C pair
CUA
(1) (a) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. Science
2006, 312, 217–224. (b) Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien,
R. Y. Nat. ReV. Mol. Cell Biol. 2002, 3, 906–918. (c) Ting, A. Y.; Kain,
A. H.; Klemke, R. L.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 2002, 98,
15003–15008. (d) Gaietta, G.; Deerinck, T. J.; Adams, S. R.; Bouwer, J.;
Tour, O.; Laird, D. W.; Sosinsky, G. E.; Tsien, R. Y. Science 2002, 296,
503–507. (e) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760–
1763.
(2) (a) Matz, M. V.; Fradkov, A. F.; Labas, Y. A.; Savitsky, A. P.; Zaraisky,
A. G.; Markelov, M. L.; Lukyanov, S. A.Nat. Biotechnol. 1999, 17, 969–
973. (b) Hu, C. D.; Kerppola, T. K. Nat. Biotechnol. 2003, 21, 539–545.
(c) Roger, R. Y. Annu. ReV. Biochem. 1998, 67, 509–544.
and 0.4 mM Anap in S. cereVisiae using the reported method.19
The selective incorporation of Anap into QBP was confirmed by
ESI-MS (Figure S4, Supporting Information).
To examine the ability of Anap to detect local structural changes,
the mutant N160Anap QBP (QBP-N160Anap) was titrated with
glutamine, and fluorescence was measured. With increasing con-
centrations of glutamine, λmemaxZ of QBP-N160Anap undergoes a
large shift from 480 to 430 nm (Figure 3); the fluorescence intensity
at 430 nm also increased roughly 5-fold. We then measured the
fluorescence anisotropy before (0.20 ( 0.01) and after (0.23 ( 0.01)
glutamine binding to determine if differences in the rotational
mobility of the Anap side chain contribute to the spectral changes.
However, the anisotropy difference between the two states is not
significant suggesting that the fluorescence changes are mainly
caused by differences in the polarity of the environment around
Anap in the two conformational states. The Kd of the mutant protein
for glutamine, which was measured directly from the change in
Anap fluorescence, was found to be 10 nM (Figure 3), close to
that of the wild-type protein (6.4 nM, Figure S5, Supporting
Information), suggesting that the relatively small size of Anap does
not cause significant structural perturbations to QBP. Since the
genetic incorporation of Anap into proteins is quantitative and site-
specific, and no additional components or steps are required (such
as a reactive linker to conjugate the protein and fluorophore or a
specific targeting sequence), this method represents a straightfor-
ward approach to interrogate changes at specific sites in protein
structure versus global changes in overall protein structure.20
(3) (a) Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269–272.
(b) Griffin, B. A.; Adams, S. R.; Jones, J.; Tsien, R. Y. Methods Enzymol.
2000, 327, 565–578. (c) Adams, S. R.; Campbell, R. E.; Gross, L. A.;
Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.; Tsien, R. Y. J. Am.
Chem. Soc. 2002, 124, 6063–6076.
(4) (a) Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.;
Johnsson, K. Nat. Biotechnol. 2003, 21, 86–89. (b) Chen, I.; Howarth, M.;
Lin, W.; Ting, A. Y. Nat. Methods 2005, 2, 99–104. (c) Carrico, I. S.;
Carlson, B. L.; Bertozzi, C. R. Nat. Chem. Biol. 2007, 3, 321–322.
(5) Cotton, G. J.; Muir, T. W. Chem. Biol. 2000, 7, 253–261.
(6) Hamada, H.; Kameshima, N.; Szymanska, A.; Wegner, K.; Lankiewicz,
L.; Shinohara, H.; Taki, M.; Sisido, M. Bioorg. Med. Chem. 2005, 13, 3379–
3384.
(7) (a) Summerer, D.; Chen, S.; Wu, N.; Deiters, A.; Chin, J. W.; Schultz,
P. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9785–9789. (b) Wang, J.;
Xie, J.; Schultz, P. G. J. Am. Chem. Soc. 2006, 128, 8738–8739.
(8) Weber, G.; Farris, F. J. Biochemistry 1979, 18, 3075–3078.
(9) (a) Macgregor, R. B.; Weber, G. Nature 1986, 319, 70–73. (b) Cohen,
B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L. Y.
Science 2002, 296, 1700–1703. (c) Lakowicz, J. R. Principles of Fluores-
cence Spectroscopy; Kluwer Academic/Plenum Press: New York, 1999.
(10) Davis, B. N.; Abelt, C. J. J. Phys. Chem. A 2005, 109, 1295–1298.
(11) (a) Jones, G., II; Jackson, W. R.; Choi, C. J. Phys. Chem. 1985, 89, 294–
300. (b) Bramhall, J. Biochemistry 1986, 25, 3479–3486.
(12) Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem.
Soc. 2004, 126, 14306–14307.
(13) Tippmann, E. M.; Schultz, P. G. Tetrahedron 2007, 63, 6182–6184.
(14) (a) Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z.;
Schultz, P. G. Science 2003, 301, 964–967. (b) Chin, J. W.; Cropp, T. A.;
Chu, S.; Meggers, E.; Schultz, P. G. Chem. Biol. 2003, 10, 511–519.
(15) Xie, J.; Liu, W.; Schultz, P. G. Angew. Chem., Int. Ed. 2007, 46, 9239–
9242.
In summary, a fluorescent amino acid was incorporated into
proteins in yeast with high efficiency and specificity in response to
the amber codon. The amino acid was site-specifically incorporated
into the E. coli glutamine binding protein and used to directly probe
local structural changes caused by ligand binding. The small size
of Anap and ability to introduce it by simple mutagenesis at defined
sites in the proteome should make it a useful local probe of protein
structure, molecular interactions, protein folding, and localization.
We are currently applying this method to imaging protein localiza-
tion in both yeast and mammalian cells.21
(16) Cusack, S.; Yaremchuk, A.; Tukalo, M. EMBO J. 2000, 19, 2351–2361.
(17) Sun, Y. J.; Rose, J.; Wang, B.; Hsiao, C. J. Mol. Biol. 1998, 278, 219–
229.
(18) Wada, A.; Mie, M.; Aizawa, M.; Lahoud, P.; Cass, A. E. G.; Kobatake, E.
J. Am. Chem. Soc. 2003, 125, 16228–16234.
(19) Wang, Q.; Wang, L. J. Am. Chem. Soc. 2008, 130, 6066–6067.
(20) Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J. M.; Adams, J. A.; Ikura,
M.; Tsien, R. Y. Nature 1997, 388, 882–887.
(21) Liu, W.; Brock, A.; Chen, S.; Chen, S.; Schultz, P. G. Nat. Methods 2007,
4, 239–244.
JA904896S
9
J. AM. CHEM. SOC. VOL. 131, NO. 36, 2009 12923