6498 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 20
Cosner et al.
precipitated red solid was collected by vacuum filtration. The
solid cake was washed with 1 N HCl (2 ꢀ 20 mL) and DI water
(2 ꢀ 20 mL). The solid was allowed to air-dry, affording 1.12 g
of 1a (95%). 1H NMR matched that of an a commercial
sample; mp = > 200 °C. 1H NMR (500 MHz, DMSO-d6)
δ 7.92 (d, J = 8 Hz, 2H), 7.83 (d, J = 8 Hz, 2H), 7.71 (d, J =
8 Hz), 7.38-7.34 (m, 5H), 7.32-7.29 (m, 2H), 7.23-7.20 (m,
3H), 6.84 (s, 1H). 13C (125 MHz, DMSO-d6) δ 169.2, 167.4,
156.4, 152.7, 146.7, 140.2, 132.9, 131.0, 130.4, 129.9, 129.5,
129.3, 128.9, 128.3, 127.6, 127.2, 126.9, 125.7, 122.6, 118.1,
111.4, 111.4, 104.5. HRMS (FAB) calcd for C28H18BrNO4 (M
þ H)þ 512.0497, found 512.0485. IR (KBr pellet): 3418, 3057,
(10) (a) Egorova, A. Y.; Sedavkina, V. A.; Timofeeva, Z. Y. Synthesis
and structure of 5-alkyl(aryl)pyrrol-2-ones. Chem. Heterocycl.
Compd. 2001, 37, 550–553. (b) Egorova, A. Y. Synthesis of arylidene
derivatives of N-unsubstituted pyrrolin-2-ones. Russ. Chem. Bull.,
Int. Ed. 2002, 51, 183–184. (c) Egorova, A. Y.; Nesterova, V. V.
Synthesis of arylidene derivatives of 1-aryl-3H-pyrrol-2-ones.
Chem. Heterocycl. Compd. 2004, 40, 1002–1006.
(11) Filler, R.; Piasek, E. J.; Leipold, H. A. R-Benzylidene-γ-phenyl-
4β,γ-butenolide. Org. Synth. 1963, 43, 3–5.
(12) Tsolomiti, G.; Tsolomitis, A. An unxpected simple synthesis of
N-substituted 2-acetoxy-5-arylpyrroles and their hydrolysis to
3- and 4-pyrrolin-2-ones. Tetrahedron Lett. 2004, 45, 9353–9355.
(13) Holla, B. S.; Malini, K. V.; Sarojini, B. K.; Poojary, B. Novel
Three-Component Synthesis of Triazinothiazolones. Synth. Com-
mun. 2005, 35, 333–340.
1706, 1683, 1605, 1470, 1173, 1112 cm-1
.
(14) (a) Elsinger, F.; Schreiber, J.; Eschenmoser, A. Notiz uber die
Selektivitat der Spaltung von Carbonsaure-methylestern mit
Lithiumjodid. Helv. Chim. Acta 1960, 43, 113–118. (b) Fisher,
J. W.; Trinkle, K. L. Iodide Dealkylation of Benzyl, PMB, PNB,
and t-Butyl N-acyl Amino Acid Esters via Lithium Ion Coordina-
tion. Tetrahedron Lett. 1994, 35, 2505–2508.
(15) Fleming, S. A. Chemical Regents in Photoaffinity Labeling. Tetra-
hedron 1995, 51, 12479–12520.
€
(16) Andersen, J.; Madsen, U.; Bjorkling, F.; Liang, X. Rapid Synthesis
of Aryl Azides from Aryl Halides under Mild Conditions. Synlett
Acknowledgment. We thank the Ara Parseghian Medical
Research Foundation and the University of Notre Dame
for financial support of this research. This work was also
supported by NIH grant R37-DK27083 to F.R.M. Also, we
thank Prof. J. David Warren and Dr. Guangtao Zhang of
the Milstein Organic Synthesis Core Facility of Cornell
University for their help with DiI chromatography and
B. Attawut for help in preparing DiI-LDL. M.R. was
supported by a grant from the W. M. Keck Foundation.
2005, 2209–2213.
(17) Barral, K.; Moorhouse, A. D.; Moses, J. E. Efficient Conversion of
Aromatic Amines into Azides: A One-Pot Synthesis of Triazole
Linkages. Org. Lett. 2007, 9, 1809–1811.
(18) Marks, K. M.; Nolan, G. P. Chemical labeling strategies for cell
Supporting Information Available: Detailed experimental
procedures and characterization data for all intermediates,
products, and biochemical assays are available. This material
biology. Nat. Methods 2006, 3, 591–596.
(19) Schwabacher, A. W.; Lane, J. W.; Schiesher, M. W.; Leigh, K. M.;
Johnson, C. W. Desymmetrization Reactions: Efficient Prepara-
tion of Unsymmetrically Substituted Linker Molecules. J. Org.
Chem. 1998, 63, 1727–1729.
(20) Zhao, X. Z.; Semenova, E. A.; Liao, C.; Nicklaus, M.; Pommier,
Y.; Burke, T. R. Biotinylated biphenyl ketone-containing
2,4-dioxobutanoic acids designed as HIV-1 integrase photoaffinity
ligands. Bioorg. Med. Chem. 2006, 14, 7816–7825.
(21) Susumu, K.; Uyeda, H. T.; Medintz, I. T.; Pons, T.; Delehanty,
J. B.; Mattoussi, H. Enhancing the Stability and Biological Func-
tionalities of Quantum Dots via Compact Multifunctional
Ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996.
(22) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A
Stepwise Huisgen Cycloaddition Process: Copper(I)-catalyzed
Regioselective “Ligation” of Azides and Terminal Alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599.
References
(1) For recent reviews, see: (a) Sturley, S. L.; Patterson, M. C.; Balch,
W.; Liscum, L. The pathophysiology and mechanisms of NP-C
disease. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2004, 1685,
83–87. (b) Mukherjee, S.; Maxfield, F. R. Lipid and cholesterol
trafficking in NPC. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids
2004, 1685, 28–37. (c) Maxfield, F. R.; Tabas, I. Role of cholesterol
and lipid organization in disease. Nature 2005, 438, 612–621.(d)
Wraith, J. E.; Imrie, J. Understanding Niemann-Pick Disease Type C
and Its Potential Treatment. Blackwell Publishing Co.: Malden, MA,
2007; pp 1-36.
(2) Cataldo, A. M.; Nixon, R. A. Neuronal Protein Trafficking in
Alzheimer’s Disease and Niemann-Pick Type C Disease. In
Protein Trafficking in Neurons; Bean, A. J., Ed.; Academic Publish-
ing: New York, 2007; pp 391-411.
(3) Liscum, L.; Ruggiero, R. M.; Faust, J. R. The intracellular transport
of low-density lipoprotein derived cholesterol is defective in
Niemann-Pick type C fibroblasts. J. Cell Biol. 1989, 108, 1625–1636.
(4) Walkley, S. U.; Suzuki, K. Consequences of NPC1 and NPC2 loss
of function in mammalian neurons. Biochim. Biophys. Acta, Mol.
Cell Biol. Lipids 2004, 1685, 48–62.
(5) Infante, R. E.; Abi-Mosleh, L.; Radhakrishnan, A.; Dale, J. D.;
Brown, M. S.; Goldstein, J. L. Purified NPC1 Protein: I. Binding of
Cholesterol and Oxysterols to a 1278-Amio Acid Membrane
Protein. J. Biol. Chem. 2008, 283, 1052–1063.
(6) Xu, S.; Benoff, B.; Liou, H. L.; Lobel, P.; Stock, A. M. Structural
basis of sterol binding by NPC2, a lysosomal protein deficient in
Niemann-Pick type C2 disease. J. Biol. Chem. 2007, 282, 23525–
23531.
(23) (a) Goldstein, J. L.; Dana, S. E.; Faust, J. R.; Beaudet, A. L.;
Brown, M. S. Role of lysosomal acid lipase in the metabolism
of plasma low density lipoprotein. Observations in cultured
fibroblasts from
a patient with cholesteryl ester storage
disease. J. Biol. Chem. 1975, 250, 8487–8495. (b) Goldstein, J. L.;
Basu, S. K.; Brown, M. S. Receptor-mediated endocytosis of
low-density lipoprotein in cultured cells. Methods Enzymol. 1983,
98, 241–260.
(24) Chang, T. Y.; Chang, C. C. Y; Cheng, D. Acyl-coenzyme A:
cholesterol acyltransferase. Annu. Rev. Biochem. 1997, 66, 613–638.
(25) Sokol, J.; Blanchette-Mackie, J.; Kruth, H. S.; Dwyer, N. K.;
Amende, L. M.; Butler, J. D.; Robinson, E.; Patel, S.; Brady,
R. O.; Comly, M. E.; Vanier, M. T.; Pentchev, P. G. Type C
Niemann-Pick disease. Lysosomal accumulation and defective
intracellular mobilization of low density lipoprotein cholesterol.
J. Biol. Chem. 1988, 263, 3411–3417.
(26) Rosenbaum, A. I.; Rujoi, M.; Huang, A. Y.; Du, H.; Grabowski,
G. A.; Maxfield, F. R. Biochim. Biophys. Acta, Mol. Cell Biol.
Lipids 2009, DOI: doi:10.1016/j.bbalip.2009.08.005.
(27) McGraw, T. E.; Greenfield, L.; Maxfield, F. R. Functional expres-
sion of the human transferrin receptor CDNA in Chinese hamster
ovary cells deficient in endogenous transferrin receptor. J. Cell
Biol. 1987, 105, 207–214.
(7) Infante, R. E.; Wang, M. L.; Radhakrishnan, A.; Kwon, H. J.;
Brown, M. S.; Goldstein, J. L. NPC2 facilitates bidirectional
transfer of cholesterol between NPC1 and lipid bilayers, a step in
cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 15287–15292.
(8) (a) Liscum, L.; Arnio, E.; Anthony, M.; Howley, A.; Sturley, S. L.;
Agler, M. Identification of a pharmaceutical compound that
partially corrects the Niemann-Pick C phenotype in cultured cells.
J. Lipid Res. 2002, 43, 1708–1717. (b) Patterson, M. C.; Platt, F.
Therapy of Niemann-Pick disease, type C. Biochim. Biophys.
Acta, Mol. Cell Biol. Lipids 2004, 1685, 77–82. (c) Helquist, P.;
Wiest, O. Current status of drug therapy development for
Niemann-Pick type C disease. Drugs Future 2009, 34, 315–331.
(9) Pipalia, N. H.; Huang, A.; Ralph, H.; Rujoi, M.; Maxfield, F. R.
Automated microscopy screening for compounds that partially
revert cholesterol accumulation in Niemann-Pick C cells. J. Lipid
Res. 2006, 47, 284–301.
(28) Sun, Y.; Hao, M.; Luo, Y.; Liang, C.; Silver, D. L.; Cheng, C.;
Maxfield, F. R.; Tall, A. R. Stearoyl CoA Desaturase Inhibits
ATP-binding Cassette Transporter A1-mediated Cholesterol
Efflux and Modulates Membrane Domain Structure. J. Biol.
Chem. 2003, 278, 5813–5820.
(29) Wang, Y.; Castoreno, A. B.; Stockinger, W.; Nohturfft,
A. Modulation of Endosomal Cholesteryl Ester Metabolism
by Membrane Cholesterol. J. Biol. Chem. 2005, 280, 11876–
11886.
(30) Brown, M. S.; Goldstein, J. L. The SREBP Pathway: Regulation of
Cholesterol Metabolism by Proteolysis of a Membrane-bound
Factor. Cell 1997, 89, 331–340.