These values have been obtained by removal of the solvent molecules
by using the utility SQUEEZE in PLATON software package.
SQUEEZE-PLATON: (a) ref. 12; (b) ref. 13. CCDC 728271.
Crystallographic
Mw = 1989.72, monoclinic, P21/c (no. 14), a = 13.6922(11) A,
47.412(4) A, 12.5608(10) A, 90.791(2)1,
V = 8153.4(11) A3, Dc = 1.621 g cmꢀ3, Z = 4, T = 90(2) K,
42 183 reflections measured, 14 315 unique (Rint 0.0662),
data
for
4:
C
90H32F30N6ꢂ2.62(CH2Cl2),
b
=
c
=
b =
=
R1 = 0.0975 (I 4 2.0s(I)), wR2 = 0.2117 (all data), GOF = 1.207
(I 4 2.0s(I)). CCDC 728273. Crystallographic data for 4-TFA2:
C
90H34F30N6ꢂ2(C2HF3O2)ꢂ2(C2F3O2)ꢂ3(CH2Cl2), Mw
= 2478.11,
monoclinic, P21/c (no. 14), a = 13.8248(14) A, b = 21.260(2) A,
c = 34.396(4) A, b = 100.059(2)1, V = 9953.8(18) A3, Dc = 1.654 g
cmꢀ3, Z = 4, T = 90(2) K, 60 223 reflections measured, 22 188 unique
(Rint = 0.0415), R1 = 0.0777 (I 4 2.0s(I)), wR2 = 0.2445 (all data),
GOF = 1.015 (I 4 2.0s(I)). CCDC 728272.
Fig. 3 X-Ray crystal structure of 4ꢂTFA2. Thermal ellipsoids are
scaled to 50% probability level. meso-Pentafluorophenyl groups,
b- and phenyl-protons, and solvent molecules are omitted for clarity.
1H NMR spectrum of 4ꢂTFA1 in CD2Cl2 was very broad at
room temperature, indicating rapid conformational inter-
conversion among several aromatic species (ESIw). The
spectrum became sharpened at ꢀ80 1C, showing two sets of
signals in a ratio of 1 : 0.95 due to the inner pyrrolic b-protons
in a shielded region. These data indicated the presence of two
1 (a) A. Jasat and D. Dolphin, Chem. Rev., 1997, 97, 2267;
(b) H. Furuta, H. Maeda and A. Osuka, Chem. Commun., 2002,
1795; (c) J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003,
42, 5134; (d) T. K. Chandrashekar and S. Venkatraman, Acc.
Chem. Res., 2003, 36, 676; (e) J. Setsune, M. Toda and T. Yoshida,
Chem. Commun., 2008, 1425; (f) J. M. Lim, Z. S. Yoon, J.-Y. Shin,
K. S. Kim, M.-C. Yoon and D. Kim, Chem. Commun., 2009, 261.
2 (a) M. G. P. M. S. Neves, R. M. Martins, A. C. Tome
´
, A. J.
D. Silvestre, A. M. S. Silva, V. Felix, M. G. B. Drew and J. A.
´
aromatic species, probably two twisted Mobius aromatic
¨
S. Cavaleiro, Chem. Commun., 1999, 385; (b) J.-Y. Shin, H. Furuta,
K. Yoza, S. Igarashi and A. Osuka, J. Am. Chem. Soc., 2001, 123,
7190.
species, for 4ꢂTFA1. Upon further addition of TFA, the
1H NMR spectrum displayed a different sharp spectrum that
contains two sets of signals due to the inner b-protons in a
shielded region in a ratio of 1 : 0.88 (ESIw). This spectrum
3 (a) S. Shimizu and A. Osuka, Eur. J. Inorg. Chem., 2006, 1319;
(b) S. Shimizu, V. G. Anand, R. Taniguchi, K. Furukawa, T. Kato,
T. Yokoyama and A. Osuka, J. Am. Chem. Soc., 2004, 126, 12280;
(c) S. Mori, S. Shimizu, R. Taniguchi and A. Osuka, Inorg. Chem.,
2005, 44, 4127; (d) S. Mori and A. Osuka, J. Am. Chem. Soc., 2005,
127, 8030; (e) S. Mori, S. Shimizu, J.-Y. Shin and A. Osuka, Inorg.
Chem., 2007, 46, 4374; (f) S. Mori and A. Osuka, Inorg. Chem.,
2008, 47, 3937.
indicates the presence of two twisted conformations of Mobius
¨
aromaticity for 4ꢂTFA2, which differ possibly in position of
b-phenyl groups. Upon neutralization with aqueous NaHCO3,
4ꢂTFA2 reverted to 4 with concurrent conformational changes.
Fortunately, crystals suitable for X-ray analysis were
obtained from slow diffusion of n-hexane into a solution of
4 in CH2Cl2–TFA. The structure of this crystal, possibly
4 (a) H. S. Rzepa, Chem. Rev., 2005, 105, 3697; (b) R. Herges, Chem.
Rev., 2006, 106, 4820; (c) Z. S. Yoon, A. Osuka and D. Kim, Nat.
Chem., 2009, 1, 113; (d) D. Ajami, O. Oeckler, A. Simon and
´
R. Herges, Nature, 2003, 426, 819; (e) M. Ste˛pien, L. Latos-
Grazynski, N. Sprutta, P. Chwalisz and L. Szterenberg, Angew.
4ꢂTFA , was revealed to be a twisted Mobius conformation
¨
2
´
Chem., Int. Ed., 2007, 46, 7869.
˙
held by hydrogen bonding between TFA molecules and N–H
protons in line with the above assignments (Fig. 3). Importantly,
the six pyrrolic segments in 4ꢂTFA2 are smoothly linked with
dihedral angles of less than 321 to constitute a 28p-electron
conjugated electronic circuit.
5 Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo,
N. Shibata, Y. Higuchi, Z. S. Yoon, K. S. Kim, S. B. Noh,
J. K. Park, D. Kim and A. Osuka, Angew. Chem., Int. Ed., 2008,
47, 681.
6 J. Sankar, S. Mori, S. Saito, H. Rath, M. Suzuki, Y. Inokuma,
H. Shinokubo, K. S. Kim, Z. S. Yoon, J.-Y. Shin, J. M. Lim,
Y. Matsuzaki, O. Matsushita, A. Muranaka, N. Kobayashi,
D. Kim and A. Osuka, J. Am. Chem. Soc., 2008, 130, 13568.
7 (a) S. Shimizu, J.-Y. Shin, H. Furuta, R. Ismael and A. Osuka,
Angew. Chem., Int. Ed., 2003, 42, 78; (b) K. Youfu and A. Osuka,
Org. Lett., 2005, 7, 4381; (c) S. Mori, K. S. Kim, Z. S. Yoon,
S. B. Noh, D. Kim and A. Osuka, J. Am. Chem. Soc., 2007, 129,
11344.
In summary, b-tetraphenyl substituted [26]hexaphyrin 3 was
prepared and has been shown to be conformationally flexible
among rectangular and figure-of-eight conformations. Its
two-electron reduced congener, [28]hexaphyrin 4, exists mainly
as a dynamic equilibrium of figure-of-eight conformations but
acquires Mobius aromaticity upon protonation. Attempts to
¨
use these multiple conformational changes for some signaling
or switching systems are actively in progress in our laboratory.
This work was supported by Grants-in-Aid (no. 19205006
(A) and 20108001 (p-Space)) for Scientific Research
from MEXT.
8 (a) R. Guilard, D. T. Gryko, G. Canard, J.-M. Barbe,
B. Koszarna, S. Brandes and M. Tasior, Org. Lett., 2002, 4,
4491; (b) S. Saito and A. Osuka, Chem.–Eur. J., 2006, 12, 9095.
9 B. L. Bray, P. H. Mathies, R. Naef, D. R. Solas, T. T. Tidwell,
D. R. Artis and J. M. Muchowski, J. Org. Chem., 1990, 55, 6317.
10 (a) N. Sprutta and L. Latos-Grazynski, Chem.–Eur. J., 2001, 7,
´
˙
5099; (b) S. Shimizu, N. Aratani and A. Osuka, Chem.–Eur. J.,
2006, 12, 4909; (c) H. S. Rzepa, Org. Lett., 2008, 10, 949.
11 S. Saito, J.-Y. Shin, J. M. Lim, K. S. Kim, D. Kim and A. Osuka,
Angew. Chem., Int. Ed., 2008, 47, 9657.
Notes and references
z Crystallographic data for 3: C90H30F30N6ꢂ0.67(CHCl3), Mw
=
ꢀ
1844.78, triclinic, P1 (no. 2), a = 18.209(3) A, b = 18.259(3) A,
c = 19.016(3) A, a = 98.298(11)1, b = 105.095(10)1, g = 94.010(11)1,
V = 6002.0(17) A3, Dc = 1.531 g cmꢀ3, Z = 3, T = 123(2) K, 50 467
reflections measured, 18 798 unique (Rint = 0.0757), R1 = 0.0808
(I 4 2.0s(I)), wR2 = 0.2453 (all data), GOF = 0.800 (I 4 2.0s(I)).
12 A. L. Spek, PLATON, A Multipurpose Crystallographic Tool,
Utrecht University, Utrecht, The Netherlands, 2005.
13 P. V. D. Sluis and A. L. Spek, Acta Crystallogr., Sect. A: Found.
Crystallogr., 1990, 46, 194.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6047–6049 | 6049