(GSTs, E.C.2.5.1.18), a family of GSH-dependent enzymes,
contribute importantly to drug resistance by catalyzing adduct
formation between glutathione (GSH) and anticancer drugs
(Figure 1).3 GSTs in mammals were originally divided into
strategies have been utilized to identify GST inhibitors,
including a convenient NMR-based screening,8 dynamic
combinatorial chemistry,9 peptidomimetic GSH-conjugates,10
and Pt(IV) carboxylate framework.3d Although several suc-
cessful inhibitor candidates of GSH analogues have been
developed from these methods, they are typically restricted
to GSH-ethacrynic acid derivatives7c,e or prepared through
lengthy chemical procedures. Furthermore, some of the GSH
analogues display poor permeability across the plasma
membrane, and their clinical applications for inhibiting drug
resistance are relatively limited. Herein we report the first
rapid discovery of GST inhibitors via the bioisostere strategy
and discover the capability of lithocholic acid as one of
elements in GSH-type inhibitor design to enhance cell
permeability. In addition, we demonstrated that the lead
compound 3 shows synergetic effect with chemotherapy
drugs against breast cancer cells, and our approaches should
pave the way for the design of effective GST inhibitors.
Figure 1. Possible GST-mediated activation of anticancer drug
resistance in cancer cells.
In the initial design of GSH-based analogues, we chose
γGlu-Ser-X as the framework (Scheme 1), which is capable
eight different classes on the basis of their biofunctional
properties and sequence identities.4 In particular, it has been
shown that different GST isoenzymes such as GST P1-1,
GST A2, and GST M1 are overexpressed in many cancer
cell lines including breast cancer.5 Therefore, GST inhibition
has been recognized as an important strategy for suppression
of GST-mediated anticancer drug resistance and regulation
of cell signaling processes.
Scheme 1. Compound 1 Composed of Lithocholic Acid (LA)
Moiety Is the Lead Selected by GST Assay
To date, two types of inhibitors of GSTs, non-GSH
compounds6 and GSH analogues,7 have been reported, and
some of them have been demonstrated to enhance the
cytostatic effect of numerous anticancer drugs. Distinctive
(2) (a) Broxterman, H. J.; Giaccone, G.; Lankelma, J. Curr. Opin. Oncol.
1995, 7, 532–540. (b) Pe´rez-Toma´s, R. Curr. Med. Chem. 2006, 13, 1859–
1876.
(3) (a) Tew, K. D. Cancer Res. 1994, 54, 4313–4320. (b) Frankmoelle,
W. P.; Medina, J. C.; Shan, B.; Narbut, M. R.; Beckmann, H. Drug Metab.
Dispos. 2000, 28, 951–958. (c) Depeille, P.; Cuq, P.; Mary, S.; Passagne,
I.; Evrard, A.; Cupissol, D.; Vian, L. Mol. Pharmacol. 2004, 65, 897–905.
(d) Ang, W. H.; Khalaila, I.; Allardyce, C. S.; Juillerat-Jeanneret, L.; Dyson,
P. J. J. Am. Chem. Soc. 2005, 127, 1382–1383. (e) Turella, P.; Filomeni,
G.; Dupuis, M. L.; Ciriolo, M. R.; Molinari, A.; De Maria, F.; Tombesi,
M.; Cianfriglia, M.; Federici, G.; Ricci, G.; Caccuri, A. M. J. Biol. Chem.
2006, 281, 23725–23732.
of searching bioactive component to target GST enzymes.
With the oxygen in place for sulfur atom, the serine residue
should be in a position to mimic the cysteine of GSH with
the absence of ability as a real substrate. The synthesis of
the γGlu-Ser-X series was started with condensation of Boc-
Glu(Ot-Bu)-Ser-OH and X (aromatic, aliphatic, and hetero-
cyclic amines/alcohols), followed by the removal of Boc and
t-Bu group. Individual components from the library were
purified by HPLC and tested as possible inhibitors for GSTA2,
GSTM1, and GSTP1-1, representative of enzymes of corre-
sponding human R, µ, and π classes. Analyses of the screening
results lead to a rapid identification of a new optimal binding
component, lithocholic acid (LA). As is evident from Table 1,
compound 1 (γGlu-Ser-LA) displayed low inhibition ability
(4) Nebert, D. W.; Vasiliou, V. Hum. Genomics 2004, 1, 460–464.
(5) (a) McIlwain, C. C.; Townsend, D. M.; Tew, K. D. Oncogene 2006,
25, 1639–1648. (b) Lo, H. W.; Ali-Osman, F. Curr. Opin. Pharmacol. 2007,
7, 367–374.
(6) (a) Wu, Z.; Minhas, G. S.; Wen, D.; Jiang, H.; Chen, K.; Zimniak,
P.; Zheng, J. J. Med. Chem. 2004, 47, 3282–3294. (b) Ricci, G.; De Maria,
F.; Antonini, G.; Turella, P.; Bullo, A.; Stella, L.; Filomeni, G.; Federici,
G.; Caccuri, A. M. J. Biol. Chem. 2005, 280, 26397–26405. (c) Turella, P.;
Cerella, C.; Filomeni, G.; Bullo, A.; De Maria, F.; Ghibelli, L.; Ciriolo,
M. R.; Cianfriglia, M.; Mattei, M.; Federici, G.; Ricci, G.; Caccuri, A. M.
Cancer Res. 2005, 65, 3751–3761. (d) Ang, W. H.; Parker, L. J.; De Luca,
A.; Juillerat-Jeanneret, L.; Morton, C. J.; Lo Bello, M.; Parker, M. W.;
Dyson, P. J. Angew. Chem., Int. Ed. 2009, 48, 3854–3857.
(7) (a) Lyttle, M. H.; Hocker, M. D.; Hui, H. C.; Caldwell, C. G.; Aaron,
D. T.; Engqvist-Goldstein, A.; Flatgaard, J. E.; Bauer, K. E. J. Med. Chem.
1994, 37, 189–194. (b) Cacciatore, I.; Caccuri, A. M.; Cocco, A.; De Maria,
F.; Di Stefano, A.; Luisi, G.; Pinnen, F.; Ricci, G.; Sozio, P.; Turella, P.
Amino Acids 2005, 29, 255–261. (c) Mahajan, S.; Atkins, W. M. Cell. Mol.
Life Sci. 2005, 62, 1221–1233. (d) Jao, S. C.; Chen, J.; Yang, K.; Li, W. S.
Bioorg. Med. Chem. 2006, 14, 304–318. (e) Burg, D.; Riepsaame, J.; Pont,
C.; Mulder, G.; van de Water, B. Biochem. Pharmacol. 2006, 71, 268–
277.
(8) Lo, W. J.; Chiou, Y. C.; Hsu, Y. T.; Lam, W. S.; Chang, M. Y.;
Jao, S. C.; Li, W. S. Bioconjugate Chem. 2007, 18, 109–120.
(9) Shi, B.; Stevenson, R.; Campopiano, D. J.; Greaney, M. F. J. Am.
Chem. Soc. 2006, 128, 8459–8467.
(10) Burg, D.; Filippov, D. V.; Hermanns, R.; van der Marel, G. A.;
van Boom, J. H.; Mulder, G. J. Bioorg. Med. Chem. 2002, 10, 195–205.
Org. Lett., Vol. 12, No. 1, 2010
21