À
FULL PAPERS
Mechanistic Insights into Enantioselective C H Photooxygenation
13C NMR (125 MHz, CDCl3): d=177.1, 148.5, 148.0, 138.9,
129.4, 129.0, 126.9, 122.3, 113.2, 110.7, 64.1, 55.92, 55.86,
44.9, 27.3, 25.9 ppm; HRMS (ESI): m/z 363.1688 (calcd. for
A. Albini, Chem. Soc. Rev. 2013, 42, 97–113; h) X.
Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473–
486.
C20H24N2O3Na [M
+
Na]+ 363.1685); anal. calcd. for
[3] a) A. Bauer, F. Westkämper, S. Grimme, T. Bach,
Nature 2005, 436, 1139–1140; b) C. Müller, A. Bauer, T.
Bach, Angew. Chem. 2009, 121, 6767–6769; Angew.
Chem. Int. Ed. 2009, 48, 6640–6642; c) C. Müller, A.
Bauer, M. M. Maturi, M. C. Cuquerella, M. A. Miran-
da, T. Bach, J. Am. Chem. Soc. 2011, 133, 16689–16697;
d) M. M. Maturi, M. Wenninger, R. Alonso, A. Bauer,
A. Pçthig, E. Riedle, T. Bach, Chem. Eur. J. 2013, 19,
7461–7472; e) R. Alonso, T. Bach, Angew. Chem. 2014,
126, 4457–4460; Angew. Chem. Int. Ed. 2014, 53, 4368–
4371; f) M. M. Maturi, T. Bach, Angew. Chem. 2014,
126, 7793–7796; Angew. Chem. Int. Ed. 2014, 53, 7661–
7664.
[4] a) D. A. Nicewicz, D. W. C. MacMillan, Science 2008,
322, 77–80; b) D. A. Nagib, M. E. Scott, D. W. C. Mac-
Millan, J. Am. Chem. Soc. 2009, 131, 10875–10877;
c) H.-W. Shih, M. N. Vander Wal, R. L. Grange,
D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132,
13600–13603.
C20H24N2O3: C, 70.56; H, 7.11; N, 8.23%; found: C, 70.50; H,
7.29; N, 8.28%; [a]D25 = ++ 18.38 (c=1.0, CHCl3).
Compound 59 was obtained as colorless oil, solidified
upon cooling; yield 13% (70 mg, 0.21 mmol); Rf =0.2
1
(hexane/AcOEt, 1:1 (v/v)); H NMR (600 MHz, CDCl3): d=
7.28 (m, 1H, ArH), 7.18 (t, J=7.7 Hz, 2H, ArH), 6.81 (d,
J=1.9 Hz, 1H, ArH), 6.79 (d, J=8.1 Hz, 1H, ArH), 6.69
(dd, J=8.1 Hz, 1.9, 1H, ArH), 6.57 (d, J=8.1 Hz, 2H,
ArH), 5.08 (s, 1H, 2CH), 3.90 (s, 3H, Ar-OCH3), 3.78 (s,
3H, Ar-OCH3), 3.40 (d, J=13.9 Hz, 1H, CHH), 2.58 (d, J=
13.9 Hz, 1H CHH), 2.50 (s, 3H, NHCH3), 1.77 (s, 1H,
NHCH3), 1.41 (s, 3H, 5CH3) ppm; 13C NMR (125 MHz,
CDCl3): d=177.2, 149.3, 148.4, 138.0, 129.4, 129.0, 128.9,
126.8, 122.4, 113.3, 111.3, 76.0, 64.0, 56.0, 55.9, 42.5, 27.4,
24.7; HRMS (ESI): m/z 363.1686 (calcd. for C20H24N2O3Na
[M + Na]+ 363.1685); anal. calcd. for C20H24N2O3: C, 70.56;
H, 7.11; N, 8.23%; found: C, 70.63; H, 7.26; N, 8.12%;
[a]25 =– 38.78 (c=0.9, CHCl3).
(DS)-5-(3’,4’-Dimethoxyphenyl)-2,2,3,5-tetramethylimidazo-
lidin-4-one (60): Compound 57 (200 mg, 0.8 mmol) was dis-
solved in MeOH (8 mL), then acetone (2 mL) and
TsOH·H2O (p-toluenesulfonic acid monohydrate, 10 mg,
0.05 mmol) was added. The mixture was refluxed for 3 days,
then concentrated. The crude product was purified by flash
chromatography using silica gel with pure AcOEt. Product
60 was obtained as colorless oil; yield 40% (94 mg,
[5] D. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2012, 134,
8094–8097.
[6] D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. San-
ford, J. Am. Chem. Soc. 2011, 133, 18566–18569.
[7] a) M. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius,
Chem. Eur. J. 2014, 20, 3874–3886; b) A. Nijland, S. R.
Harutyunyan, Catal. Sci. Technol. 2013, 3, 1180–1189;
c) C. Müller, T. Bach, Aust. J. Chem. 2008, 61, 557–564.
[8] M. Neumann, S. Füldner, B. Kçnig, K. Zeitler, Angew.
Chem. 2011, 123, 981–985; Angew. Chem. Int. Ed. 2011,
50, 951–954.
1
0.32 mmol); Rf =0.3 (AcOEt); H NMR (400 MHz, CDCl3):
d=6.78 (d, J=8.1 Hz, 1H, ArH), 6.76 (d, J=1.9 Hz, 1H,
ArH), 6.69 (dd, J=8.1 and 1.9 Hz, 1H, ArH), 3.85 (s, 3H,
Ar-OCH3), 3.83 (s, 3H, Ar-OCH3), 3.24 (d, J=13.8 Hz, 1H,
CHH), 2.69 (s, 3H, NHCH3), 2.51 (d, J=13.8 Hz, 1H,
[9] Y. Zhu, L. Zhang, S. Luo, J. Am. Chem. Soc. 2014, 136,
14642–14645.
[10] a) M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C.
2
CHH), 1.95 (br s, 1H, NH), 1.39 (s, 3H, CH3), 1.29 (s, 3H,
2CH3), 0.78 (s, 3H, 5CH3) ppm; 13C NMR (100 MHz,
CDCl3): d=175.3, 148.9, 148.0, 129.4, 122.2, 113.0, 110.9,
74.3, 63.3, 55.8, 43.9, 28.3, 27.6, 27.1, 25.2 ppm; HRMS
(ESI): m/z 293.1864 (calcd. for C16H25N2O3 [M + H]+
293.1865); [a]D25 =– 59.98 (c=0.7, CHCl3).
MacMillan, Science 2013, 339, 1593–1596; b) F. R. Pet-
´
ronijevic, M. Nappi, D. W. C. MacMillan, J. Am. Chem.
Soc. 2013, 135, 18323–18326; c) J. A. Terrett, M. D.
Clift, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136,
6858–6861.
[11] a) E. L. Clennan, Tetrahedron 2000, 56, 9151–9179;
b) E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665–
6691; c) M. N. Alberti, M. Orfanopoulos, Synlett 2010,
999–1026.
Acknowledgements
[12] a) Y. Kuroda, T. Sera, H. Ogoshi, J. Am. Chem. Soc.
1991, 113, 2793–2794; b) A. G. Griesbeck, M. A. Miran-
da, J. Uhlig, Photochem. Photobiol. Sci. 2011, 10, 1431–
1435; c) A. Joy, R. J. Robbins, K. Pitchumani, V. Rama-
murthy, Tetrahedron Lett. 1997, 38, 8825–8828.
[13] C. Wiegand, E. Herdtweck, T. Bach, Chem. Commun.
2012, 48, 10195–10197.
This work was supported by the Ministry of Science and
Higher Education, grant number N NT204 187139.
References
[14] a) H. SundØn, M. Engqvist, J. Casas, I. Ibrahem, A.
Córdova, Angew. Chem. 2004, 116, 6694–6697; Angew.
Chem. Int. Ed. 2004, 43, 6532–6535; b) A. Córdova, H.
SundØn, M. Engqvist, I. Ibrahem, J. Casas, J. Am.
Chem. Soc. 2004, 126, 8914–8915; c) I. Ibrahem, G.
Zhao, H. SundØn, A. Córdova, Tetrahedron Lett. 2006,
47, 4659–4663.
[15] a) G. Zhong, Angew. Chem. 2003, 115, 4379–4382;
Angew. Chem. Int. Ed. 2003, 42, 4247–4250; b) S. P.
Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMillan, J.
[1] S. E. Braslavsky, Pure Appl. Chem. 2007, 79, 293–465.
[2] a) B. Kçnig (Ed.), Chemical Photocatalysis, De Gruyt-
er, 2013; b) C. K. Prier, D. A. Rankic, D. W. C. MacMil-
lan, Chem. Rev. 2013, 113, 5322–5363; c) J. M. R. Nar-
ayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40,
102–113; d) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem.
2013, 11, 2387–2403; e) J. Xuan, W.-J. Xiao, Angew.
Chem. 2012, 124, 6934–6944; Angew. Chem. Int. Ed.
2012, 51, 6828–6838; f) S. Fukuzumi, K. Ohkubo,
Chem. Sci. 2013, 4, 561–574; g) D. Ravelli, M. Fagnoni,
Adv. Synth. Catal. 2015, 357, 2061 – 2070
ꢂ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2069