A R T I C L E S
Nishimura et al.
Scheme 1. Formation of Capsule 3 from Cavitand Tetraboronic
assembly of tetrakis(dihydroxyboryl)-cavitand 1a as a polar
bowl-shaped aromatic cavity and 1,2-bis(3,4-dihydroxyphe-
nyl)ethane 2 as an equatorial bis(catechol)-linker14 into capsule
Acid 1 and Bis(catechol)-Linker 2a
(3) (a) Jacopozzi, P.; Dalcanale, E. Angew. Chem., Int. Ed. Engl. 1997,
36, 613–615. (b) Fox, O. D.; Dalley, N. K.; Harrison, R. G. J. Am.
Chem. Soc. 1998, 120, 7111–7112. (c) Ikeda, A.; Yoshimura, M.;
Udzu, H.; Fukuhara, C.; Shinkai, S. J. Am. Chem. Soc. 1999, 121,
4296–4297. (d) Fox, O. D.; Drew, M. G. B.; Beer, P. D. Angew. Chem.,
Int. Ed. 2000, 39, 136–140. (e) Pinalli, R.; Cristini, V.; Sottili, V.;
Geremia, S.; Campagnolo, M.; Caneschi, A.; Dalcanale, E. J. Am.
Chem. Soc. 2004, 126, 6516–6517. (f) Kobayashi, K.; Yamada, Y.;
Yamanaka, M.; Sei, Y.; Yamaguchi, K. J. Am. Chem. Soc. 2004, 126,
13896–13897. (g) Haino, T.; Kobayashi, M.; Chikaraishi, M.; Fuka-
zawa, Y. Chem. Commun. 2005, 2321–2323. (h) Park, S. J.; Shin,
D. M.; Sakamoto, S.; Yamaguchi, K.; Chung, Y. K.; Lah, M. S.; Hong,
J.-I. Chem.sEur. J. 2005, 11, 235–241. (i) Jude, H.; Sinclair, D. J.;
Das, N.; Sherburn, M. S.; Stang, P. J. J. Org. Chem. 2006, 71, 4155–
4163.
(4) (a) Corbellini, F.; Fiammengo, R.; Timmerman, P.; Crego-Calama,
M.; Versluis, K.; Heck, A. J. R.; Luyten, I.; Reinhoudt, D. N. J. Am.
Chem. Soc. 2002, 124, 6569–6575. (b) Oshovsky, G. V.; Reinhoudt,
D. N.; Verboom, W. J. Am. Chem. Soc. 2006, 128, 5270–5278.
(5) (a) Gibb, C. L.; Gibb, B. C. J. Am. Chem. Soc. 2004, 126, 11408–
11409. (b) Giles, M. D.; Liu, S.; Emanuel, R. L.; Gibb, B. C.; Grayson,
S. M. J. Am. Chem. Soc. 2008, 130, 14430–14431.
(6) (a) Lehn, J.-M. Chem.sEur. J. 1999, 5, 2455–2463. (b) Rowan, S. J.;
Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2002, 41, 898–952. (c) Severin, K.
Chem.sEur. J. 2004, 10, 2565–2580. (d) Corbett, P. T.; Leclaire, J.;
Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem.
ReV. 2006, 106, 3652–3711. (e) Mal, P.; Schultz, D.; Beyer, K.;
Rissanen, K.; Nitschke, J. R. Angew. Chem., Int. Ed. 2008, 47, 8297–
8301.
a Molecular models of 3 and 4,4′-diacetoxybiphenyl encapsulating capsule
4@3 are calculated at the PM3 level of Spartan ′06,20 wherein the side
chains R of 3 are replaced by methyl groups.
3a via the dynamic formation of boronic esters (Scheme 1).15
The self-assembled cavitand-based capsule 3a encapsulates one
guest molecule, such as 4,4′-disubstituted-biphenyl. The merit
of 3a based on the dynamic boronic ester bond is the on/off
control of capsule formation with guest encapsulation by the
removal/addition of MeOH.15 Herein, we report on a compre-
hensive study on the guest-encapsulation properties of the self-
assembled capsule 3a, including X-ray crystal structure, guest-
encapsulation selectivity, remarkable solvent effect on guest
encapsulation, and thermodynamics and kinetics on guest en-
capsulation. We propose a linker partial dissociation mechanism
for guest encapsulation and release into and out of 3a. We also
describe guest-rotation behavior within 3a directed toward the
formation of a supramolecular gyroscope.
(7) (a) Ro, S.; Rowan, S. J.; Pease, A. R.; Cram, D. J.; Stoddart, J. F.
Org. Lett. 2000, 2, 2411–2414. (b) Liu, X.; Liu, Y.; Li, G.; Warmuth,
R. Angew. Chem., Int. Ed. 2006, 45, 901–904. (c) Liu, X.; Warmuth,
R. J. Am. Chem. Soc. 2006, 128, 14120–14127. (d) Liu, Y.; Liu, X.;
Warmuth, R. Chem.sEur. J. 2007, 13, 8953–8959. (e) Xu, D.;
Warmuth, R. J. Am. Chem. Soc. 2008, 130, 7520–7521. (f) Skowronek,
P.; Gawronski, J. Org. Lett. 2008, 10, 4755–4758.
(8) Sun, J.; Patrick, B. O.; Sherman, J. C. Tetrahedron 2009, 65, 7296–
7302.
(9) (a) Fujita, N.; Shinkai, S.; James, T. D. Chem. Asian J. 2008, 3, 1076–
1091. (b) Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V. M.; Sorey, S.;
Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 1222–1232.
(10) For self-assembled polymers based on boronic ester formation, see:
(a) Coˆte´, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger,
A. J.; Yaghi, O. M. Science 2005, 310, 1166–1170. (b) Niu, W.;
O’Sullivan, C.; Rambo, B. M.; Smith, M. D.; Lavigne, J. J. Chem.
Commun. 2005, 4342–4344. (c) Tilford, R. W.; Gemmill, W. R.; zur
Loye, H.-C.; Lavigne, J. J. Chem. Mater. 2006, 18, 5296–5301. (d)
Niu, W.; Smith, M. D.; Lavigne, J. J. J. Am. Chem. Soc. 2006, 128,
16466–16467. (e) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Corte´s, J. L.;
Coˆte´, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007,
316, 268–272. (f) Coˆte´, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt,
J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914–12915. (g)
Tilford, R. W.; Mugavero, S. J.; Pellechia, P. J.; Lavigne, J. J. AdV.
Mater. 2008, 20, 2741–2746. (h) Hunt, J. R.; Doonan, C. J.; LeVangie,
J. D.; Coˆte´, A. P.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11872–
11873.
Results and Discussion
Synthesis of Self-Assembled Cavitand-Based Capsule 3a:
1H NMR Study. The cavitand tetraboronic acid 1a (side chain,
R ) (CH2)6CH3)15,16 and the bis(catechol)-linker 215 have low
solubility in CDCl3 by themselves. However, a 2:4 heteroge-
neous mixture of 1a and 2 in CDCl3 gives a homogeneous
solution on heating at 323 K for 3 h, and this quantitatively
(11) For self-assembled macrocycles based on boronic ester formation, see:
(a) Christinat, N.; Scopelliti, R.; Severin, K. Chem. Commun. 2004,
1158–1159. (b) Barba, V.; Villamil, R.; Luna, R.; Godoy-Alca´ntar,
C.; Ho¨pfl, H.; Beltram, H. I.; Zamudio-Rivera, L. S.; Santillan, R.;
Farfa´n, N. Inorg. Chem. 2006, 45, 2553–2561. (c) Christinat, N.;
Scopelliti, R.; Severin, K. J. Org. Chem. 2007, 72, 2192–2200. (d)
Christinat, N.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2008,
47, 1848–1852. (e) Hutin, M.; Bernardinelli, G.; Nitschke, J. R.
Chem.sEur. J. 2008, 14, 4585–4593.
produces capsule 3a (Scheme 1).15 The H NMR spectrum of
1
the reaction mixture shows a highly symmetrical single species
and the disappearance of the OH groups of the 1a and 2 units
(Figure 1c vs Figure 1a and 1b), indicating the quantitative
1
formation of 3a. The H NMR chemical shift change of 3a
relative to 1a and 2, ∆δ (δcomplex - δfree), is 0.14, -0.20, 0.10,
(12) For, self-assembled capsules based on boronic or boronate ester
formation, see: (a) Iwasawa, N.; Takahagi, H. J. Am. Chem. Soc. 2007,
129, 7754–7755. (b) Kataoka, K.; James, T. D.; Kubo, Y. J. Am. Chem.
Soc. 2007, 129, 15126–15127. (c) Ic¸li, B.; Christinat, N.; To¨nnemann,
J.; Schu¨ttler, C.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2009,
131, 3154–3155.
(14) For catechol-based metal ion assisted self-assembly of capsules, see:
(a) Schalley, C. A.; Lu¨tzen, A.; Albrecht, M. Chem.sEur. J. 2004,
10, 1072–1080. (b) Fiedler, D.; Leung, D. H.; Bergman, R. G.;
Raymond, K. N. Acc. Chem. Res. 2005, 38, 351–360.
(15) Nishimura, N.; Kobayashi, K. Angew. Chem., Int. Ed. 2008, 47, 6255–
6258.
(13) For self-assemblies based on spiroborate, see: (a) Katagiri, H.;
Miyagawa, T.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2006,
45, 1741–1744. (b) Danjo, H.; Hirata, K.; Yoshigai, S.; Azumaya, I.;
Yamaguchi, K. J. Am. Chem. Soc. 2009, 131, 1638–1639.
(16) Sherman, J. C.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1991,
113, 2194–2204.
9
778 J. AM. CHEM. SOC. VOL. 132, NO. 2, 2010