Brief Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 3 1391
Dr. Ashok Khar, Centre for DNA Finger Printing and
Diagnostics, Hyderabad, India, for helping us with the DC
isolation procedure from mouse bone marrow. R.S., D.P.,
Y.V.M., B.K.M. and A.G. thank the Council of Scientific and
Industrial Research, Government of India, New Delhi, and
P.P.K. thanks University Grant Commission, Government
of India, New Delhi, for providing doctoral research fellow-
ships. A.C. thanks Department of Biotechnology and the
Council of Scientific and Industrial Research, Government
of India, New Delhi (Grant NWP-0036), for providing finan-
cial support.
class II compartment: downregulation by cytokines and bacterial
products. J. Exp. Med. 1995, 182, 389–400.
(6) (a) Toda, S.; Ishii, N.; Okada, E.; Kusakabe, K. I.; Arai, H.;
Hamajima, K.; et al. HIV-1-specific cell-mediated immune
responses induced by DNA vaccination were enhanced by mannan-
coated liposomes and inhibited by anti-interferon-gamma anti-
body. Immunology 1997, 92, 111–117. (b) Cui, Z.; Mumper, R. J.
Topical immunization using nanoengineered genetic vaccines. J. Con-
trolled Release 2002, 81, 173–184. (c) Hattori, Y.; Kawakami, S.;
Suzuki, S.; Yamashita, F.; Hashida, M. Enhancement of immune
responses by DNA vaccination through targeted gene delivery using
mannosylated cationic liposome formulations following intravenous
administration in mice. Biochem. Biophys. Res. Commun. 2004, 317,
992–999. (d) Wijagkanalan, W.; Kawakami, S.; Takenaga, M.; Igarashi,
R.; Yamashita, F.; Hashida, M. Efficient targeting to alveolar macro-
phages by intratracheal administration of mannosylated liposomes in
rats. J. Controlled Release 2008, 125, 121–130. (e) Lu, Y.; Kawakami,
S.; Yamashita, F.; Hashida, M. Development of an antigen-presenting
cell-targeted DNA vaccine against melanoma by mannosylated lipo-
somes. Biomaterials 2007, 28, 3255–3262.
Supporting Information Available: Detailed descriptions for
syntheses of lipids 1-3, 1H NMR, high resolution mass spectra,
reverse phase HPLC chromatograms, and HPLC conditions in
two mobile phases for the cationic amphiphiles 1-3, details for
transfection and cellular uptake experiments, isolation of mbm
DCs, DC-based immunization of mice, ELISA assays, and
FACS protocol. This material is available free of charge via
(7) (a) Grandjean, C.; Angyalosi, G.; Loing, E.; Adriaenssens, E.;
ꢀ
Melnyk, O.; Pancre, V.; Auriault, C.; Gras-Masse, H. Novel
hyperbranched glycomimetics recognized by the human mannose
receptor: quinic or shikimic acid derivatives as mannose. Chem.
Biochem. 2001, 2, 747–757. (b) Chenevier, P.; Grandjean, C.; Loing,
E.; Malingue, F.; Angyalosi, G.; Gras-Masse, H.; et al. Grafting of
synthetic mannose receptor-ligands onto onion vectors for human
dendritic cells targeting. Chem. Commun. 2002, 20, 2446–2447.
(c) Bonnet, D.; Angyalosi, G.; Demory, A.; Santraine, V.; Boulet, A.;
Spriet, C.; et al. Effect of glycoamphiphiles on the solubilization and
dendritic cell uptake of a lipopeptide: a preliminary study. Mol.
Pharmaceutics 2005, 2, 420–427.
References
(1) (a) Ishii, K. J.; Kawagoe, T.; Koyama, S.; Matsui, K.; Kumar, H.;
Kawai, T.; Uematsu, S.; Takeuchi, O.; Takeshita, F.; Coban, C.;
Akira, S. TANK-binding kinase-1 delineates innate and adaptive
immune responses to DNA vaccines. Nature 2008, 451, 725–729.
(b) Rice, J.; Ottensmeier, C. H.; Stevenson, F. K. DNA vaccines:
precision tools for activating effective immunity against cancer. Nat.
Rev. Cancer. 2008, 8, 108–120.
(2) Gurunathan, S.; Klinman, D. M.; Seder, R. A. DNA vaccines:
immunology, application, and optimization. Annu. Rev. Immunol.
2000, 18, 927–974.
(3) (a) Germain, R. N. MHC-dependent antigen processing and pep-
tide presentation: providing ligands for T lymphocyte activation.
Cell 1994, 76, 287–299. (b) Akbari, O.; Panjwani, N.; Garcia, S.;
Tascon, R.; Lowrie, D.; Stockinger, B. DNA vaccination: transfection
and activation of dendritic cells as key events for immunity. J. Exp.
Med. 1999, 189, 169–178. (c) Chattergon, M. A.; Robinson, T. M.;
Boyer, J. D.; Weiner, D. B. Specific immune induction following DNA-
based immunization through in vivo transfection and activation of
macrophages/antigen-presenting cells. J. Immunol. 1998, 160, 5707–
5718. (d) Banchereau, J.; Steinman, R. M. Dendritic cells and the
control of immunity. Nature 1998, 392, 245–252.
(4) (a) Hedley, M. L.; Curley, J.; Urban, R. Microspheres containing
plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat.
Med. 1998, 4, 365–368. (b) Singh, M.; Briones, M.; Ott, G.; O'Hagan,
D. Cationic microparticles: a potent delivery system for DNAvaccines.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 811–816. (c) Perrie, Y.;
Frederick, P. M.; Gregoriadis, G. Liposome-mediated DNA vaccina-
tion: the effect of vesicle composition. Vaccine 2001, 19, 3301–3310.
(d) Irvine, A. S.; Trinder, P. K.; Laughton, D. L.; Ketteringham, H.;
McDermott, R. H.; Reid, C.; Haines, A. M.; Amir, A.; Husain, R.;
Doshi, R.; Young, L. S.; Mountain, A. Efficient nonviral transfection of
dendritic cells and their use for in vivo immunization. Nat. Biotechnol.
2000, 18, 1273–1278.
(8) Steinman, R. M. The dendritic cell system and its role in immuno-
genicity. Annu. Rev. Immunol. 1991, 9, 271–296.
(9) (a) Banchereau, J.; Palucka, A. K. Dendritic cells as therapeutic
vaccines against cancer. Nat. Rev. Immunol. 2005, 5, 296–306.
(b) Gilboa, E. J. DC-based cancer vaccines. J. Clin. Invest. 2007,
117, 1195–1203. (c) Lu, W.; Arraes, L. C.; Ferreira, W. T.; Andrieu,
J. M. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection.
Nat. Med. 2004, 10, 1359–1365.
(10) Zhai, Y.; Yang, J. C.; Spiess, P.; Nishimura, M. I.; Overwijk,
W. W.; Roberts, B.; et al. Cloning and characterization of the
genes encoding the murine homologues of the human melanoma
antigens MART1 and gp100. J. Immunother. 1997, 20, 15–25.
(11) (a) Ribas, A.; Butterfield, L. H.; McBride, W. H.; Jilani, S. M.; Bui,
L. A.; Vollmer, C. M.; et al. Genetic immunization for the
melanoma antigen MART-1/Melan-A using recombinant adeno-
virus-transduced murine dendritic cells. Cancer. Res. 1997, 57,
2865–2869. (b) Broder, H.; Anderson, A.; Kremen, T. J.; Odesa, S.
K.; Liau, L. M. MART-1 adenovirus-transduced dendritic cell immu-
nization in a murine model of metastatic central nervous system tumor.
J. Neuro-Oncol. 2003, 64, 21–30.
(12) Rengarajan, J.; Szabo, S. J.; Glimcher, L. H. Transcriptional regula-
tion of Th1/Th2 polarization. Immunol. Today 2000, 21, 479–483.
(13) Mukthavaram, R.; Marepally, S.; Venkata, M. Y.; Vegi, G. N.;
Sistla, R.; Chaudhuri, A. Cationic glycolipids with cyclic and open
galactose head groups for the selective targeting of genes to mouse
liver. Biomaterials 2009, 30, 2369–2384.
(14) (a) Yoshida, H.; Nishikawa, M.; Yasuda, S.; Mizuno, Y.; Toyota,
H.; Kiyota, T.; Takahashi, R.; Takakura, Y. TLR9-dependent
systemic interferon-β production by intravenous injection of plas-
mid DNA/cationic liposome complex in mice. J. Gene Med. 2009,
11, 708–717. (b) Dow, S. Liposome-nucleic acid immunotherapeutics.
Expert. Opin. Drug. Delivery 2008, 5, 11–24.
(5) Sallusto, F.; Cella, M.; Danieli, C.; Lanzavecchia, A. Dendritic
cells use macropinocytosis and the mannose receptor to concen-
trate macromolecules in the major histocompatibility complex