2990
A. Lange et al.
LETTER
Overman, L. E. J. Am. Chem. Soc. 1993, 115, 2992.
(d) Mulzer, J.; Greifenberg, S.; Buschmann, J.; Luger, P.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1173.
isolated 4c and isolated 4d undergo quantitative 1,2-mi-
gration to the corresponding rearrangement products (2b
and 3a) when transition-metal catalysts are present
(Scheme 6), these observations are most consistent with
the rapid equilibrium of 1 and 4.22 Nevertheless, that 1 and
4 are equilibrated more rapidly than they undergo a pina-
col-type shift does not explain why the selectivity (forma-
tion of 2 vs. 3) is completely reversed when going from
the five-membered to the six-membered ring system.
(e) MacMillan, D. W. C.; Overman, L. E.; Pennington, L. D.
J. Am. Chem. Soc. 2001, 123, 9033.
(7) For a review on the use of carbophilic Lewis acids in
combination with pinacol-type rearrangments, see: Crone,
B.; Kirsch, S. F. Chem. Eur. J. 2008, 14, 3514.
(8) For our works in the field, see: (a) Kirsch, S. F.; Binder,
J. T.; Crone, B.; Duschek, A.; Haug, T. T.; Liébert, C.;
Menz, H. Angew. Chem. Int. Ed. 2007, 46, 2310. (b) Menz,
H.; Binder, J. T.; Crone, B.; Duschek, A.; Haug, T. T.;
Kirsch, S. F.; Klahn, P.; Liébert, C. Tetrahedron 2009, 65,
1880. (c) Kirsch, S. F.; Binder, J. T.; Liébert, C.; Menz, H.
Angew. Chem. Int. Ed. 2006, 45, 5878. (d) Binder, J. T.;
Crone, B.; Kirsch, S. F.; Liébert, C.; Menz, H. Eur. J. Org.
Chem. 2007, 1636. (e) Crone, B.; Kirsch, S. F. J. Org.
Chem. 2007, 72, 5435. (f) Baskar, B.; Bae, H. J.; An, S. E.;
Cheong, J. Y.; Rhee, Y. H.; Duschek, A.; Kirsch, S. F. Org.
Lett. 2008, 10, 2605.
In conclusion, we have described the first studies on tran-
sition-metal-catalyzed rearrangements of aryl-substituted
2-butene-1,4-diol units. While cyclobutane 1a and cyclo-
pentanes 1b–f and 1k were shown to undergo clean ring
expansion to 2-styryl-substituted cyclopentanones and
cyclohexanones of type 2, aryl-group migration yielding
2-aryl aldehydes 3 was found to be the preferred pathway
when employing substrates that possess either other ring
sizes or an acyclic core.23 The reaction outcome is predict-
able, and the 1,2-migration follows a rapidly equilibrating
1,3-isomerization.
(9) (a) Wassermann, H. H.; Cochoy, R. E.; Baird, M. S. J. Am.
Chem. Soc. 1969, 91, 2375. (b) Wassermann, H. H.; Hearn,
M. J.; Cochoy, R. J. Org Chem. 1980, 45, 2874.
(c) Wienand, A.; Reissig, H.-U. Chem. Ber. 1991, 124, 957.
(d) Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc.
1999, 121, 2645. (e) Hegedus, L. S.; Ranslow, P. B.
Synthesis 2000, 953. (f) Nishimura, T.; Ohe, K.; Uemura, S.
J. Org. Chem. 2001, 66, 1455. (g) Markham, J. P.; Staben,
S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708.
(10) For seminal works, see: (a) Ollivier, J.; Legros, J.-Y.; Fiaud,
J.-C.; de Meijere, A.; Salaün, J. Tetrahedron Lett. 1990, 31,
4135. (b) Ollivier, J.; Salaün, J. Tetrahedron Lett. 1984, 25,
1269. (c) Salaün, J.; Karkour, B. Tetrahedron Lett. 1988, 29,
1537. (d) Funayama, S.; Eda, S.; Komiyama, K.; Ohmura,
S.; Tokunaga, T. Tetrahedron Lett. 1989, 30, 3151.
(e) Salaün, J.; Karkour, B. Tetrahedron Lett. 1987, 28, 4669.
(11) For an asymmetric Wagner–Meerwein shift related to this
pinacol rearrangement, see: Trost, B. M.; Yasukata, T.
J. Am. Chem. Soc. 2001, 123, 7162.
(12) (a) Lutz, R. E.; Bass, R. G.; Boykin, D. W. J. Org. Chem.
1964, 29, 3660. (b) Saito, K.; Horie, Y.; Mukai, T.; Toda, T.
Bull. Chem. Soc. Jpn. 1985, 58, 3118. (c) Uyehara, T.;
Kawai, Y.; Yamada, J.-i.; Kato, T. Chem Lett. 1987, 16, 137.
(13) Exposure of six-membered ring substrate 1c to 5 mol% of
PPTS at 23 °C in CH2Cl2 provided an inseparable mixture of
3c and 4c in low yields (e.g., 29% after 14 h).
(14) Protic acid catalysis: (a) Braude, E. A.; Fawcett, J. S.;
Newman, D. D. E. J. Chem. Soc. 1950, 793. (b) Braude,
E. A.; Jones, E. R. H.; Stern, E. S. J. Chem. Soc. 1946, 396.
(c) Braude, E. A.; Jones, E. R. H. J. Chem. Soc. 1944, 436.
(d) Braude, E.; Stern, E. J. Chem. Soc. 1947, 1096.
(e) Sanz, R.; Martínez, A.; Miguel, D.; Álvarez-Gutiérres,
J. M.; Rodríguez, F. Adv. Synth. Catal. 2006, 348, 1841.
(15) Lewis acid catalysis: (a) Mukhopadhyay, M.; Reddy, M.
M.; Maikap, G. C.; Iqbal, J. J. Org. Chem. 1995, 60, 2670.
(b) Li, C.-J.; Wang, D.; Chen, D.-L. J. Am. Chem. Soc. 1995,
117, 12867. (c) Malkov, A. V.; Baxendale, I.; Mansfield,
D. J.; Kocovsky, P. Tetrahedron Lett. 1995, 38, 6351.
(d) Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem.
2006, 71, 7813. (e) Kitamura, M.; Hayashi, H.; Yano, M.;
Tanaka, T.; Maezaki, M. Heterocycles 2007, 71, 2669.
(16) For a related case, see inter alia: Wang, J.; Huang, W.;
Zhang, Z.; Xiang, X.; Liu, R.; Zhou, X. J. Org. Chem. 2009,
74, 3299.
Supporting Information for this article is available online at
Acknowledgment
This project was supported by the Deutsche Forschungsgemein-
schaft (DFG). We thank Prof. Dr. Th. Bach for fruitful discussions
and generous support.
References and Notes
(1) (a) Fittig, R. Justus Liebigs Ann. Chem. 1859, 110, 23.
(b) Butlerov, A. Justus Liebigs Ann. Chem. 1874, 174, 125.
(c) Mundy, B. P.; Otzenberger, R. D. J. Org. Chem. 1973,
38, 2109.
(2) For an Essay on the discovery, see: Berson, J. A. Angew.
Chem. Int. Ed. 2002, 114, 4849.
(3) Collins, C. J. Q. Rev. Chem. Soc. 1960, 14, 357.
(4) For recent examples, see inter alia: (a) Suzuki, K.;
Takikawa, H.; Hachisu, Y.; Bode, J. W. Angew. Chem. Int.
Ed. 2007, 46, 3252. (b) Reisman, S. E.; Ready, J. M.;
Hasuoka, A.; Smith, C. J.; Wood, J. L. J. Am. Chem. Soc.
2006, 128, 1448. (c) Alvarez-Manzaneda, E.; Chahboun, R.;
Barranco, I.; Cabrera, E.; Alvarez, E.; Lara, A.; Alvarez-
Manzaneda, R.; Hmamouchi, M.; Es-Samti, H. Tetrahedron
2007, 63, 11943. (d) Frongia, A.; Girard, C.; Ollivier, J.;
Piras, P. P.; Secci, F. Synlett 2008, 2823.
(5) (a) Trost, B. M.; Lee, D. C. J. Am. Chem. Soc. 1988, 110,
6556. (b) Trost, B. M.; Brandi, A. J. Am. Chem. Soc. 1984,
106, 5041. (c) Sworin, M.; Neumann, W. L. J. Org. Chem.
1988, 53, 4894. (d) Nakamura, T.; Matsui, T.; Tanino, K.;
Kuwajima, I. J. Org. Chem. 1997, 62, 3032. (e) Youn,
J.-H.; Lee, J.; Cha, J. K. Org. Lett. 2001, 3, 2935.
(6) For a review on Prins pinacol cascades, see: (a) Overman,
L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143.
For selected examples and synthetic applications, see:
(b) Grese, T. A.; Hutchinson, K. D.; Overman, L. E. J. Org.
Chem. 1993, 58, 2468. (c) Hirst, G. C.; Johnson, T. O.;
(17) Reaction of 1b in the presence of MgBr2 (5 mol%) led to
clean formation of 4b without traces of 2b (or 3b).
Synlett 2009, No. 18, 2987–2991 © Thieme Stuttgart · New York