776
J IRAN CHEM SOC (2013) 10:771–776
2. P.C. Lansaker, J. Backholm, G.A. Niklasson, C.G. Granqvist,
Thin Solid Films 518, 1225–1229 (2009)
3. A. Dhayal Raj, T. Pazhanivel, P. Suresh Kumar, D. Mangalaraj,
D. Nataraj, N. Ponpandian, Curr. Appl. Phys. 10, 531–537 (2010)
4. D. Kalpana, K.S. Omkumar, S. Suresh Kumar, N.G. Rengana-
than, Electrochim. Acta 52, 1309–1315 (2006)
5. T. Miwa, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S.C.
Verma, K. Sugihara, Int. J. Hydrogen Energy 35, 6554–6560
(2010)
6. P. Suresh, S. Rodrigues, A.K. Shukla, H.N. Vasan, N. Munich-
andraiah, Solid State Ionics 176, 281–290 (2005)
7. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V.
Narayanan, Synth. React. Inorg. Met. Org. Nano Met. Chem. 42,
303–307 (2012)
8. C.S.S.R. Kumar, F. Mohammad, Adv. Drug Deliv. Rev. 63,
789–808 (2011)
9. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr.
Appl. Phys. 9, 673–677 (2009)
10. F. Yakuphanoglu, Sol. Energy 85, 2704–2709 (2011)
11. F. Zhang, F.L. Bei, J.M. Cao, X. Wang, J. Solid State Chem. 181,
143–149 (2008)
12. D.H. Fan, J. Cryst. Growth 311, 2300–2304 (2009)
13. R.R. Salunkhe, D.S. Dhawale, U.M. Patil, C.D. Lokhande, Sens.
Actuators B 136, 39–44 (2009)
0.2 mL of 0.1 mM catechol. A successive addition of
catechol to continuously stirred 0.1 M PBS produces a
significant increase in the current. The almost equal current
steps for each addition of catechol illustrate that the CdO/
GCE is stable and has an efficient electrocatalytic activity
towards the catechol. The prompt response was attributed
to the heterogeneous electron transfer of CdO/GCE. The
calibration graph for the determination of catechol by the
CdO/GCE is shown as the inset in Fig. 8. The linear range
was almost found between 7.5 9 10-6 and 1.5 9 10-4
M
with a correlation coefficient of 0.9952 corresponding with
a sensitivity of 9.8 nA lM-1, shows that the CdO/GCE is
highly sensitive towards catechol. The results clearly
indicate that the electrocatalytic reaction takes place
between the CdO/GCE and catechol, which is due to the
electron transfer between catechol and the modified elec-
trode; as a result, the electrochemical oxidation of catechol
becomes easier. In addition, it is clear that CdO/GCE can
be effectively used for the electrochemical sensing of
catechol.
14. F. Yakuphanoglu, Appl. Surf. Sci. 257, 1413–1419 (2010)
15. C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesh, R. Viswa-
natha, Powder Technol. 214, 337–343 (2011)
16. M. Ghosh, C.N.R. Rao, Chem. Phys. Lett. 393, 493 (2004)
17. V. Srinivasan, J.W. Weidner, J. Power Sour. 108, 15–20 (2002)
18. L.D. Kadam, S.H. Pawar, P.S. Patil, Mater. Chem. Phys. 68,
280–282 (2001)
19. H. Okabe, J. Akimitsu, T. Kubodera, M. Matoba, T. Kyomen, M.
Itoh, Phys. B (Amsterdam, Neth.) 378-380, 863 (2006)
20. M. Longhi, L. Formaro, J. Electroanal. Chem. 464, 149–157 (1999)
21. F. Svegl, B. Orel, I.G. Svegl, C.V. Kaucic, Electrochim. Acta 45,
4359–4371 (2000)
22. I.G. Casella, M.R. Guascito, J. Electroanal. Chem. 476, 54–63
(1999)
23. I.G. Casella, M. Gatta, J. Electroanal. Chem. 534, 31–38 (2002)
24. I.G. Casella, J. Electroanal. Chem. 520, 119–125 (2002)
25. L.F. Fan, X.Q. Wu, M.D. Guo, Y.T. Gao, Electrochim. Acta 52,
3654–3659 (2007)
26. D. Quan, W. Shin, Electroanalysis 16, 1576–1582 (2004)
27. S. Mu, Biosens. Bioelectron. 21, 1237–1243 (2006)
28. R.B. Fahim, G.A. Kolta, J. Phys. Chem. 74, 2502–2506 (1970)
29. A. Moses Ezhil Raj, D. Deva Jayanthi, V. Bena Jothy, Solid State
Sci. 10, 557–562 (2008)
30. B.S. Zou, V.V. Volkov, Chem. Mater. 11, 3037–3043 (1999)
31. A. Gulino, G. Tabbi, A.A. Scalisi, Chem. Mater. 15, 3332–3336
(2003)
Conclusion
CdO nanoplatelets were synthesized by simple thermal
decomposition of cadmium malonate at 550 °C. The XRD,
FT-IR and DRS-UV–Vis analyses were used to study the
synthesized sample spectrally and FE-SEM analysis was
used to study the morphology of the sample. CdO nano-
platelets were successfully fabricated onto the GCE for
sensing of catechol. From the electrochemical measurements,
it is clearly understood that the CdO nanoplatelet-modified
electrode shows a wide linear range of concentration for
catechol sensing.
Acknowledgments One of the authors (K.Giribabu) wish to thank
Department of Science and Technology (DST), Government of India
for the financial assistance in the form of INSPIRE fellowship (Inspire
Fellow no.10226) under the AORC scheme. In addition, authors thank
National Centre for Nanoscience and Nanotechnology (NCNSNT),
University of Madras for recording FE-SEM.
32. Z.C. Michael Hu, T. Michael Harris, H. Charles Byers, J. Colloid
Interface Sci. 198, 87–99 (1998)
33. S. Zhaorigetu, H. Yao, Garidi. Front. Chem. Chin. 3, 277–280
(2006)
34. F. Zhang, J. Yang, Int. J. Chem. 1, 18–22 (2009)
35. R.M. Wightman, E. Strope, P.M. Plotsky, R.N. Adams, Nature
262, 145–146 (1976)
References
1. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V.
Narayanan, Mater. Chem. Phys. 134, 590–596 (2012)
123