5 (a) G. Hogarth, E.-J. C.-R. C. R. Rainford-Brent and I. Richards,
Inorg. Chim. Acta, 2009, 362, 1361; (b) C. Anastasiadis, G. Hogarth
and J. D. E. T. Wilton-Ely, Inorg. Chim. Acta, 2010, 363, 3222.
6 (a) P. D. Beer, N. Berry, M. G. B. Drew, O. D. Fox, M. E. Padilla-
Tosta and S. Patell, Chem. Commun., 2001, 199; (b) O. D. Fox,
M. G. B. Drew and P. D. Beer, Angew. Chem., Int. Ed., 2003, 39, 135.
7 (a) R. E. Benson, C. A. Ellis, C. E. Lewis and E. R. T. Tiekink,
CrystEngComm, 2007, 9, 930; (b) R. A. Howie, G. M. de Lima,
D. C. Menezes, J. L. Wardell, S. M. S. V. Wardell, D. J. Young
and E. R. T. Tiekink, CrystEngComm, 2008, 10, 1626; (c)
S. Naeem, E. Ogilvie, A. J. P. White, G. Hogarth and
J. D. E. T. Wilton-Ely, Dalton Trans., 2010, 39, 4080; (d)
E. R. T. Tiekink and J. Zukerman-Schpector, Coord. Chem. Rev.,
2010, 254, 46; (e) E. R. T. Tiekink and D. J. Young, J. Chem.
Crystallogr., 2008, 38, 419; (f) I. Haiduc, in Comprehensive
Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer,
Elsevier Ltd, Oxford, UK, 2004, vol. 1, p. 349.
metal atom and the absolute structure parameter was ꢀ0.05(3)
confirming the refined absolute structure. Whereas in 2, the
largest difference peak and hole 5.07 and ꢀ4.63 e Aꢀ3 both close
ꢀ
to the metal atom. The crystallographic data are presented in
Table 3.
Computational details
Molecular geometries were optimized at the level of density
functional theory (DFT) using the B3LYP exchange-correlation
functional.26 The split valence basis sets, 6-31G**, were used at
all C, N, and H atom centers whereas basis set, 6-311G**, was
used at S atom centers. Stephens–Basch–Krauss ECP triple-split
basis set, CEP-121G, was used for Hg atom. The optimized
structures of the complexes at DFT level were used for molecular
orbital analyses and vertical electronic absorption spectra
calculations. Solvent effects on the vertical electronic spectra
were investigated by using polarized continuum model (PCM).27
The solvent parameters were those of dichloromethane. The
excitation energies and intensities of the six lowest-energy spin
allowed electronic transitions were calculated using the time
dependent density functional theory (TD-DFT). The intermo-
lecular interaction energies have been estimated at the MP2 level
of theory. For the interaction energy calculations, the Hg/S,
Hg/N and Hg/C (p) distances have been fixed for the dimers
and trimers while all other degrees of freedom were relaxed in the
geometry optimization. The magnitudes of energies corre-
sponding to these dimers and trimers were subtracted from twice
the energy of monomer in the cases of dimers or three times for
trimers. The intermolecular interaction strengths are significantly
weaker than either ionic or covalent bonding, therefore it was
essential to do basis set superposition error (BSSE) corrections.
The BSSE corrections in the interaction energies were done using
the Boys–Bernardi Scheme.28 In this paper all interaction ener-
gies have been reported after BSSE correction. All computa-
tional experiments have been performed using the Gaussian 03
programme.29 The electrostatic potential at van der Waals
surface plots was obtained with the MOLDEN program.30
8 (a) G. M. de Lima, D. C. Menezes, C. A. Cavalcanti, J. A. F. dos
Santos, I. P. Ferreira, E. B. Paniago, J. L. Wardell,
S. M. S. V. Wardell, K. Krambrock, I. C. Mendes and H. Beraldo,
J. Mol. Struct., 2011, 988, 1; (b) A. Mederos, A. Cachapa,
ꢁ
R. Hernandez-Molina, M. T. Armas, P. Gili, M. Sokolov,
J. Gonzalez-Platas and F. Brito, Inorg. Chem. Commun., 2003, 6, 498.
ꢁ
9 (a) E. Wehman, G. van Koten and J. T. B. H. Jastrzebski, J. Chem.
Soc., Dalton Trans., 1988, 2975; (b) A. F. M. J. van der Ploeg,
G. van Koten and K. Vrieze, J. Organomet. Chem., 1981, 222, 115;
(c) G. K. Anderson, Organometallics, 1983, 2, 665; (d) R. J. Cross
and J. Gemmill, J. Chem. Soc., Dalton Trans., 1984, 199; (e)
R. J. Cross and J. Gemmill, J. Chem. Soc., Dalton Trans., 1984,
205; (f) C. Eaborn, A. Pidcock and B. R. Steele, J. Chem. Soc.,
Dalton Trans., 1976, 767; (g) C. Eaborn, K. Kundu and A. Pidcock,
J. Chem. Soc., Dalton Trans., 1981, 933; (h) W. J. Scott and
J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033.
10 (a) R. C. Larock, Angew. Chem., Int. Ed. Engl., 1978, 17, 27; (b)
J. G. Melnick, K. Yurkerwich and G. Parkin, Inorg. Chem., 2009,
48, 6763.
11 (a) C. S. Lai and E. R. T. Tiekink, CrystEngComm, 2003, 5, 253; (b)
N. Singh, A. Kumar, K. C. Molloy and M. F. Mahon, Dalton Trans.,
2008, 4999; (c) N. Singh, A. Kumar, R. Prasad, K. C. Molloy and
M. F. Mahon, Dalton Trans., 2010, 39, 2667; (d) V. Singh,
R. Chauhan, A. Kumar, L. Bahadur and N. Singh, Dalton Trans.,
2010, 39, 9779.
12 (a) N. W. Alcock, Adv. Inorg. Chem. Radiochem., 1972, 15, 1; (b)
N. W. Alcock, Bonding and Structure: Structural Principles in
Inorganic and Organic Chemistry, Ellis Horwood, New York, 1990;
(c) I. Haiduc and F. T. Edelmann, Supramolecular Organometallic
Chemistry, Wiley-VCH, Weinheim, 1999; (d) I. Haiduc, Secondary
Bonding, in Encyclopedia of Supramolecular Chemistry, ed. J. L.
Atwood and J. Steed, Marcel Dekker Inc., New York, 2004,
p. 1215.
13 (a) R. J. Pudephatt, Chem. Commun., 1998, 1055; (b) R. J. Pudephatt,
Coord. Chem. Rev., 2001, 216–217, 313; (c) H. Schumidbaur, Chem.
Soc. Rev., 1995, 24, 391; (d) M. I. Bruce, B. C. Hall,
B. W. Skeleton, M. E. Smith and A. H. White, J. Chem. Soc.,
Dalton Trans., 2002, 995; (e) P. Li, B. Ahrens, K.-H. Choi,
M. S. Khan, P. R. Raithby, P. J. Khan, M. S. Wilson and
W.-Y. Wong, CrystEngComm, 2002, 4, 405.
14 (a) C. S. Lai and E. R. T. Tiekink, Acta Crystallogr., Sect. E: Struct.
Rep. Online, 2002, 58, m674; (b) C. S. Lai and E. R. T. Tiekink, Appl.
Organomet. Chem., 2003, 17, 194; (c) E. R. T. Tiekink, J. Organomet.
Chem., 1987, 322, 1.
15 K. A. Wheeler, B. Harrington, M. Zapp and E. Casey,
CrystEngComm, 2003, 5, 337.
16 R. T. Kern, J. Am. Chem. Soc., 1953, 75, 1865.
Acknowledgements
We are grateful to Council of Scientific and Industrial Research,
New Delhi for financial assistance in the form of Senior Research
Fellowship (VS) and Project no. 01(2290)/09/EMR-II and SAP,
Department of Chemistry, Banaras Hindu University, Varanasi
for providing computational facility. AK is grateful to Professor
William S. Sheldrick and Mrs Heike Mayer-Figge for solving the
X-ray data and also for their immense support and
encouragement.
References
17 E. S. Rydakov, S. A. Mitchenko and N. A. Miroshnichenko, Kinet.
Katal., 1987, 28, 187.
18 H. Kunkely and A. Vogler, Polyhedron, 1988, 8, 2731.
19 W.-Y. Wong, L. Li and J.-X. Shi, Angew. Chem., Int. Ed., 2003, 42,
4064.
1 (a) G. Hogarth, Prog. Inorg. Chem., 2005, 53, 71; (b) J. Cookson and
P. D. Beer, Dalton Trans., 2007, 1459; (c) S. Naeem, A. J. P. White,
G. Hogarth and J. D. E. T. Wilton-Ely, Organometallics, 2010, 29,
2547.
20 S. Lamansky, P. Djurovich, D. Marphy, F. Abdel-Razzaq,
R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Ban and
M. E. Thompson, Inorg. Chem., 2001, 41, 1704.
21 A. Kumar, H. Mayer-Figge, W. S. Sheldrick and N. Singh, Eur. J.
Inorg. Chem., 2009, 2720.
22 SAINT+ 6.02 ed, Bruker AXS, Madison, WI, 1999.
2 O. D. Fox, M. G. B. Drew and P. D. Beer, Angew. Chem., Int. Ed.,
2000, 39, 135.
3 M. E. Padilla-Tosta, O. D. Fox, M. G. B. Drew and P. D. Beer,
Angew. Chem., Int. Ed., 2001, 40, 4235.
4 J. D. E. T. Wilton-Ely, D. Solanki, E. R. Knight, K. B. Holt,
A. L. Thompson and G. Hogarth, Inorg. Chem., 2008, 47, 9642.
This journal is ª The Royal Society of Chemistry 2011
CrystEngComm, 2011, 13, 6817–6826 | 6825