Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 12 4699
(3) Walsh, D. M.; Selkoe, D. J. Aβ oligomers;a decade of discovery.
J. Neurochem. 2007, 101, 1172–1184.
(4) Citron, M. Strategies for disease modification in Alzheimer’s
(24) Luchsinger, J. A. Adiposity, hyperinsulinemia, diabetes and
Alzheimer’s disease: an epidemiological perspective. Eur. J. Phar-
macol. 2008, 585, 119–129.
disease. Nat. Rev. Neurosci. 2004, 5, 677–685.
(5) Golde, T. E. Disease modifying therapy for AD? J. Neurochem.
2006, 99, 689–707.
(25) Bernardo, A.; Minghetti, L. PPAR-gamma agonists as regulators
of microglial activation and brain inflammation. Curr. Pharm. Des.
2006, 12, 93–109.
(6) Barten, D. M.; Meredith, J. E.; Zaczek, R.; Houston, J. G.;
Albright, C. F. Gamma-secretase inhibitors for Alzheimer’s dis-
ease: balancing efficacy and toxicity. Drugs R&D 2006, 7, 87–97.
(7) De Strooper, B.; Annaert, W.; Cupers, P.; Saftig, P.; Craessaerts,
K.; Mumm, J. S.; Schroeter, E. H.; Schrijvers, V.; Wolfe, M. S.;
Ray, W. J.; Goate, A.; Kopan, R. A presenilin-1-dependent
gamma-secretase-like protease mediates release of Notch intracel-
lular domain. Nature 1999, 398, 518–522.
(8) Wong, G. T.; Manfra, D.; Poulet, F. M.; Zhang, Q.; Josien, H.;
Bara, T.; Engstrom, L.; Pinzon-Ortiz, M.; Fine, J. S.; Lee, H. J.;
Zhang, L.; Higgins, G. A.; Parker, E. M. Chronic treatment with
the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid
peptide production and alters lymphopoiesis and intestinal cell
differentiation. J. Biol. Chem. 2004, 279, 12876–12882.
(9) Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.; Pietrzik,
C. U.; Findlay, K. A.; Smith, T. E.; Murphy, M. P.; Bulter, T.;
Kang, D. E.; Marquez-Sterling, N.; Golde, T. E.; Koo, E. H. A
subset of NSAIDs lower amyloidogenic Abeta42 independently of
cyclooxygenase activity. Nature 2001, 414, 212–216.
(10) Leuchtenberger, S.; Beher, D.; Weggen, S. Selective modulation of
Abeta42 production in Alzheimer’s disease: non-steroidal anti-
inflammatory drugs (NSAIDs) and beyond. Curr. Pharm. Des.
2006, 12, 4337–4355.
(11) Weggen, S.; Rogers, M.; Eriksen, J. NSAIDs: small molecules for
prevention of Alzheimer’s disease or precursors for future drug
development? Trends Pharmacol. Sci. 2007, 28, 536–543.
(12) Green, R. C.; Schneider, L. S.; Hendrix, S. B.; Zavitz, K. H.;
Swabb, E. Safety and Efficacy of Tarenflurbil in Subjects with Mild
Alzheimer’s Disease: Results from an 18-Month Multi-Center
Phase 3 Trial. Presented at the International Conference on
Alzheimer’s Disease, Chicago, IL, July 2008; Alzheimer’s and
Dementia; No. O3-04-01, T165.
(26) Combs, C. K.; Johnson, D. E.; Karlo, J. C.; Cannady, S. B.;
Landreth, G. E. Inflammatory mechanisms in Alzheimer’s disease:
inhibition of beta-amyloid-stimulated proinflammatory responses
and neurotoxicity by PPARgamma agonists. J. Neurosci. 2000, 20,
558–567.
(27) Heneka, M. T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.;
Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van
Leuven, F.; Landreth, G. E. Acute treatment with the PPARgam-
ma agonist pioglitazone and ibuprofen reduces glial inflammation
and Abeta1-42 levels in APPV717I transgenic mice. Brain 2005,
128, 1442–1453.
(28) Camacho, I. E.; Serneels, L.; Spittaels, K.; Merchiers, P.;
Dominguez, D.; De Strooper, B. Peroxisome proliferator-activated
receptor gamma induces a clearance mechanism for the amyloid-
beta peptide. J. Neurosci. 2004, 24, 10908–10917.
(29) Sastre, M.; Dewachter, I.; Rossner, S.; Bogdanovic, N.; Rosen, E.;
Borghgraef, P.; Evert, B. O.; Dumitrescu-Ozimek, L.; Thal, D. R.;
Landreth, G.; Walter, J.; Klockgether, T.; van Leuven, F.; Heneka,
M. T. Nonsteroidal anti-inflammatory drugs repress {beta}-secre-
tase gene promoter activity by the activation of PPAR{gamma}.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 443–448.
(30) Nicolakakis, N.; Aboulkassim, T.; Ongali, B.; Lecrux, C.;
Fernandes, P.; Rosa-Neto, P.; Tong, X. K.; Hamel, E. Complete rescue
of cerebrovascular function in aged Alzheimer’s disease transgenic mice
by antioxidants and pioglitazone, a peroxisome proliferator-activated
receptor gamma agonist. J. Neurosci. 2008, 28, 9287–9296.
(31) Rabiner, E. A.; Tzimopoulou, S.; Cunningham, V. J.; Jeter, B.;
Zvartau-Hind, M.; Castiglia, M.; Mistry, P.; Bird, N. P.;
Matthewsw, J.; Whitcher, B.; Nichols, T. E.; Lai, R.; Lotay, N.;
Saunders, A.; Reiman, E.; Chen, K.; Gold, M.; Matthews, P. M.
Effects of 12 months of treatment with the PPARgamma agonist
rosiglitazone on brain glucose metabolism in Alzheimer’s disease: a
18F-FDG PET study. Alzheimer’s Dementia 2009, 5, 207.
(32) Sato, T.; Hanyu, H.; Hirao, K.; Kanetaka, H.; Sakurai, H.;
Iwamoto, T. Efficacy of PPAR-gamma agonist pioglitazone in
mild Alzheimer disease. Neurobiol. Aging [Online early access]. DOI:
10.1016/j.neurobiolaging.2009.10.009. Published Online: Nov 17,
2009.
(13) in ’t Veld, B. A.; Ruitenberg, A.; Hofman, A.; Launer, L. J.;
van Duijn, C. M.; Stijnen, T.; Breteler, M. M.; Stricker, B. H.
Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s
disease. N. Engl. J. Med. 2001, 345, 1515–1521.
(14) Vlad, S. C.; Miller, D. R.; Kowall, N. W.; Felson, D. T. Protective
effects of NSAIDs on the development of Alzheimer disease.
Neurology 2008, 70, 1672–1677.
(15) Peretto, I.; La Porta, E. Gamma-secretase modulation and its
promise for Alzheimer’s disease: a medicinal chemistry perspective.
Curr. Top. Med. Chem. 2008, 8, 38–46.
(33) Maeshiba, Y.; Kiyota, Y.; Yamashita, K.; Yoshimura, Y.;
Motohashi, M.; Tanayama, S. Disposition of the new antidiabetic
agent pioglitazone in rats, dogs, and monkeys. Arzneim. Forsch.
1997, 47, 29–35.
(16) Page, R. M.; Baumann, K.; Tomioka, M.; Perez-Revuelta, B. I.;
Fukumori, A.; Jacobsen, H.; Flohr, A.; Luebbers, T.; Ozmen, L.;
Steiner, H.; Haass, C. Generation of Abeta 38 and Abeta 42 is
independently and differentially affected by FAD-associated pre-
senilin 1 mutations and gamma-secretase modulation. J. Biol.
Chem. 2008, 283, 677–683.
(17) Jaradat, M. S.; Wongsud, B.; Phornchirasilp, S.; Rangwala, S. M.;
Shams, G.; Sutton, M.; Romstedt, K. J.; Noonan, D. J.; Feller, D. R.
Activation of peroxisome proliferator-activated receptor isoforms and
inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and
indomethacin. Biochem. Pharmacol. 2001, 62, 1587–1595.
(34) Koeberle, A.; Zettl, H.; Greiner, C.; Wurglics, M.; Schubert-
Zsilavecz, M.; Werz, O. Pirinixic acid derivatives as novel dual
inhibitors of microsomal prostaglandin E2 synthase-1 and 5-lipoxy-
genase. J. Med. Chem. 2008, 51, 8068–8076.
(35) Mitsunobu, O. The use of diethyl azodicarboxylate and triphenyl-
phosphine in synthesis and transformation of natural products.
Synthesis 1981, 1, 1–28.
(36) Zettl, H.; Steri, R.; Lammerhofer, M.; Schubert-Zsilavecz, M.
Discovery of a novel class of 2-mercaptohexanoic acid derivatives
as highly active PPARalpha agonists. Bioorg. Med. Chem. Lett.
2009, 19, 4421–4426.
(18) Lehmann, J. M.; Lenhard, J. M.; Oliver, B. B.; Ringold, G. M.;
Kliewer, S. A. Peroxisome proliferator-activated receptors alpha
and gamma are activated by indomethacin and other non-steroidal
anti-inflammatory drugs. J. Biol. Chem. 1997, 272, 3406–3410.
(19) Lehrke, M.; Lazar, M. A. The many faces of PPARgamma. Cell
2005, 123, 993–999.
(37) Czirr, E.; Leuchtenberger, S.; Dorner-Ciossek, C.; Schneider, A.;
Jucker, M.; Koo, E. H.; Pietrzik, C. U.; Baumann, K.; Weggen, S.
Insensitivity to Abeta 42-lowering non-steroidal anti-inflamma-
tory drugs (NSAIDs) and gamma-secretase inhibitors is common
among aggressive presenilin-1 mutations. J. Biol. Chem. 2007, 282,
24504–24513.
(20) Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARgamma
agonists as therapeutics for the treatment of Alzheimer’s disease.
Neurotherapeutics 2008, 5, 481–489.
(21) Ho, L.; Qin, W.; Pompl, P. N.; Xiang, Z.; Wang, J.; Zhao, Z.; Peng,
Y.; Cambareri, G.; Rocher, A.; Mobbs, C. V.; Hof, P. R.; Pasinetti,
G. M. Diet-induced insulin resistance promotes amyloidosis in a
transgenic mouse model of Alzheimer’s disease. FASEB J. 2004, 18,
902–904.
(22) Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda,
T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.;
Morishita, R. Diabetes-accelerated memory dysfunction via cere-
brovascular inflammation and Abeta deposition in an Alzheimer
mouse model with diabetes. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 7036–7041.
(23) Biessels, G. J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens,
P. Risk of dementia in diabetes mellitus: a systematic review.
Lancet Neurol. 2006, 5, 64–74.
(38) Karlstrom, H.; Bergman, A.; Lendahl, U.; Naslund, J.; Lundkvist,
J. A sensitive and quantitative assay for measuring cleavage of
presenilin substrates. J. Biol. Chem. 2002, 277, 6763–6766.
(39) Farce, A.; Renault, N.; Chavatte, P. Structural insight into PPAR-
gamma ligands binding. Curr. Med. Chem. 2009, 16, 1768–1789.
(40) Kukar, T.; Murphy, M. P.; Eriksen, J. L.; Sagi, S. A.; Weggen, S.;
Smith, T. E.; Ladd, T.; Khan, M. A.; Kache, R.; Beard, J.; Dodson,
M.; Merit, S.; Ozols, V. V.; Anastasiadis, P. Z.; Das, P.; Fauq, A.;
Koo, E. H.; Golde, T. E. Diverse compounds mimic Alzheimer
disease-causing mutations by augmenting Abeta42 production.
Nat. Med. 2005, 11, 545–550.
(41) Popescu, L.; Rau, O.; Bottcher, J.; Syha, Y.; Schubert-Zsilavecz,
M. Quinoline-based derivatives of pirinixic acid as dual PPAR
alpha/gamma agonists. Arch. Pharm. (Weinheim, Ger.) 2007, 340,
367–371.
(42) Rau, O.; Syha, Y.; Zettl, H.; Kock, M.; Bock, A.; Schubert-
Zsilavecz, M. Alpha-alkyl substituted pirinixic acid derivatives as