oligomeric benzyl phosphates (OBPn) for use as soluble,
stable benzylating reagents.
Interest in further improvements17 of such protocols has led
to the study reported herein.
The innate properties of phosphates as leaving groups have
inspired the current study aimed at developing oligomeric
phosphate-based reagents. While phosphates have been
uniquely tailored to play vital roles in nature,7 only recently
have they found widespread use in synthetic methodology
and total synthesis.8 This resurgence is primarily attributed
to their stability, facile assembly, and ideal monoanionic pKa
profiles.9 Despite these attributes, synthetic oligomeric-based
phosphates and other phosphorus-containing materials have
found applications primarily in the production of flame-
retardant materials10 with limited use in novel therapeutic
applications.11 To the best of our knowledge, the literature
is void of immobilized phosphate-based alkylating/benzy-
lating agents.
The synthesis of oligomeric benzyl phosphate 6 was
envisioned to occur via reduction of endo norbornenyl
anhydride 1 to the corresponding diol, followed by phos-
phorylation and subsequent condensation with benzyl alco-
hol. However, repeated attempts to polymerize the endo
isomer of monomer 5 with a variety of metathesis catalysts
resulted in incomplete conversions. Plausibly, both steric and
electronic interactions of the PdO bond of the resulting endo
isomer could interfere with catalyst/olefin activation or the
subsequent propagation step.
Attention was next directed toward synthesis of the
thermodynamic exo isomer (Scheme 1). Several thermal
The benzylation of amines and alcohols continues to
serve as one of the most utilized protecting group
strategies in organic synthesis due to its ease of incorpora-
tion and removal.12,13,7b In addition, benzylation has
emerged as a key diversification reaction in medicinal/
combinatorial chemistry approaches as well as diversity-
oriented synthesis.14 This continued use has spurred devel-
Scheme 1
.
Synthesis of the Oligomeric Benzyl Phosphate
(OBP)
opment of
a number of alternative approaches to
benzylation.15,16 Among these, two ROMP-derived benzy-
lating agents were recently developed in our laboratory.5c,16b
(5) (a) Rolfe, A.; Probst, D.; Volp, K.; Omar, I.; Flynn, D.; Hanson,
P. R. J. Org. Chem. 2008, 73, 8785–8790. (b) Stoianova, D. S.; Yao, L.;
Rolfe, A.; Samarakoon, T.; Hanson, P. R. Tetrahedron Lett. 2008, 49, 4553–
4555. (c) Zhang, M.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2007, 72,
3194–3198. (d) Roberts, R. S. J. Comb. Chem. 2005, 7, 21–32. (e) Harned,
A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61,
12093–12099. (f) Arstad, E.; Barrett, A. G. M.; Tedeschi, L. Tetrahedron
Lett. 2003, 44, 2703–2707. (g) Barrett, A. G. M.; Hopkins, B. T.; Love,
A. C.; Tedeschi, L. Org. Lett. 2004, 6, 835–837.
(6) Vedantham, P.; Zhang, M.; Gor, P. J.; Huang, M.; Georg, G. I.;
Lushington, G. H.; Mitscher, L. A.; Ye, Q.-Z.; Hanson, P. R. J. Comb.
Chem. 2008, 10, 195–203.
isomerization reactions of the inexpensive endo carbic
anhydride 1 were performed on large scale using classical
methods.18 Sequential recrystallizations in toluene yielded
exo product 2 with diastereomeric ratios progressively
increasing and yields decreasing with each recrystallization,
[i.e., dr )15:1 and 39% yield after three recrystallizatons,
dr )29:1 and 34% yield after four, up to dr )84:1 and 20%
(7) (a) Westheimer, F. H. Science 1987, 235, 1173–1178. (b) Paquette,
L. A. In Encyclopedia of Reagents for Organic Synthesis, 1st ed.; John
Wiley and Sons: New York, 1995; pp 316-318.
(8) (a) Yanagisawa, A.; Nomura, N.; Noritake, Y.; Yamamoto, H.
Synthesis 1991, 12, 1130–1136. (b) Torneiro, M.; Fall, Y.; Castedo, L.;
Mourino, A. J. Org. Chem. 1997, 62, 6344–6352. (c) Murphy, K. E.;
Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4690–4691. (d) Williams,
D. R.; Heidebrecht, R. W., Jr. J. Am. Chem. Soc. 2003, 125, 1843–1850.
(e) Fuwa, H.; Sasaki, M. Heterocycles 2008, 76, 521–539. (f) Thomas, C. D.;
McParland, J. P.; Hanson, P. R. Eur. J. Org. Chem. 2009, 5487–5500. (g)
Smith, A. G.; Johnson, J. S. Org. Lett. 2010, 12, 1784–1787.
(9) (a) Nicolaou, K. C.; Shi, G. Q.; Gunzner, J. L.; Gaertner, P.; Yang,
Z. J. Am. Chem. Soc. 1997, 119, 5467–5468. (b) La Cruz, T. E.;
Rychnovsky, S. D. J. Org. Chem. 2007, 72, 2602–2611. (c) Lapointe, D.;
Fagnou, K. Org. Lett. 2009, 11, 4160–4163.
(15) (a) Loris, A.; Perosa, A.; Selvia, M.; Tundo, P. J. Org. Chem. 2004,
69, 3953–3956. (b) Shieh, W.-C.; Lozanov, M.; Loo, M.; Repic, O.;
Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563–4565. (c) Shieh, W.-C.;
Lozanov, M.; Repic, O. Tetrahedron Lett. 2003, 44, 6943–6945. (d) Huang,
W.; He, B. Chin. J. React. Polym. (Engl.) 1992, 1, 61–70. (e) Hunt, J. A.;
Roush, W. R. J. Am. Chem. Soc. 1996, 118, 9998–9999. (f) Rueter, J. K.;
Nortey, S. O.; Baxter, E. W.; Leo, G. C.; Reitz, A. B. Tetrahedron Lett.
1998, 39, 975–978. (g) Baxter, E. W.; Rueter, J. K.; Nortey, S. O.; Reitz,
A. B. Tetrahedron Lett. 1998, 39, 979–982. (h) Takahashi, T.; Ebata, S.;
Doi, T. Tetrahedron Lett. 1998, 39, 1369–1372.
(10) (a) Morgan, A. B.; Tour, J. M. J. Appl. Polym. Sci. 1999, 73, 707–
718. (b) Wang, J.; Mao, H.-Q.; Leong, K. W. J. Am. Chem. Soc. 2001,
123, 9480–9481. (c) Iliescu, S.; Manoviciu, I.; Ilia, G.; Dehelean, G. Roum.
Chem. Q. ReV. 1997, 5, 267–277. (d) Kobayashi, S.; Tokunoh, M.; Saegusa,
T. Macro. Mol. 1986, 19, 466–469. (e) Allcock, H. R.; de Denus, C. R.;
Prange, R.; Laredo, W. R. Macromolecules 2001, 34, 2757–2765. (f)
Seeberger, P. H. Chem. Soc. ReV. 2008, 37, 19–28.
(16) For recent benzylation via activation of benzyl alcohols see: (a)
Poon, K. W. C.; House, S. E.; Dudley, G. B. Synlett 2005, 3142–3144. (b)
Zhang, M.; Moore, J. D.; Flynn, D. L.; Hanson, P. R. Org. Lett. 2004, 6,
2657–2660. (c) Jha, M.; Enaohwo, O.; Marcellus, A. Tetrahedron Lett. 2009,
50, 7184–7187. (d) Martinez, R.; Ramon, D. J.; Yus, M. Org. Biomol. Chem.
2009, 7, 2176–2181. (e) Zhang, C.; Gao, X.; Zhang, J.; Peng, X. Synlett
2010, 261–265.
(11) Kane, R. R.; Lee, C. S.; Drechsel, K.; Hawthorne, M. F. J. Org.
Chem. 1993, 58, 3227–3228.
(12) March, J. AdVanced Organic Chemistry, 4th ed.; Wiley: New York,
1991
.
(13) Greene, T. W.; Wuts, P. G. M. In ProtectiVe Groups in Organic
Synthesis, 4th ed.; John Wiley and Sons: New York, 2007; pp 102-148.
(14) (a) Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales,
G. A.; Thomas, C. J.; Zhang, W. J. Comb. Chem. 2009, 11, 739–790. (b)
Fenster, E.; Rayabarapu, D. K.; Zhang, M.; Mukherjee, S.; Hill, D.;
Neuenswander, B.; Schoenen, F.; Hanson, P. R.; Aube´, J. J. Comb. Chem.
2008, 10, 230–234.
(17) (a) The synthesis of oligomeric benzylsulfonium salts requires 5
steps and the use of benzyl bromides. These reagents were not soluble in
typical organic solvents.5c (b) The oligomeric sulfonate esters were used in
a “catch and release” protocol whereby benzyl alcohols were reacted after
polymerization.16b
(18) Craig, D. J. Am. Chem. Soc. 1951, 73, 4889–4892.
Org. Lett., Vol. 12, No. 13, 2010
2905