C O M M U N I C A T I O N S
Md.; Liu, R.-S. Chem. Soc. ReV. 2009, 38, 2269. (c) Shapiro, N. D.; Toste,
F. D. Synlett 2010, 675.
the [4+2]-cycloadditions of the new benzopyrilium (III). As shown
in Scheme 2, cis-substituted enol ether approaches the pyrilium
core of species III with its R3 and OR4 lying away from the bulky
gold-containing substituent. We envisage that the allylic gold
fragment of benzopyrilium III raises the HOMO energy level at
the C(4)-carbon, facilitating this concerted process.2b,9 The stepwise
pathway (ii) involving cationic intermediates V and V′ is opposed
by our observation that no epimers resulted from the conformer V′
which is actually favored by steric interactions of the cis-R3 and
OR4 substituents of species V. Species (III) is more useful than
reported benzopyriliums3 in synthetic utility, because of its isolable
and stereocontrolled [4+2]-cycloadducts.
(2) Selected examples: (a) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem.
Soc. 2009, 131, 11654. (b) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc.
2008, 130, 9244. (c) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008,
130, 6944. (d) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc.
2008, 130, 1814. (e) Liu, F.; Yu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2009,
48, 5505.
(3) [4+2]-Cycloadducts from benzopyrilium (I) are kinetically unstable and
easily rearranged to naphthalene derivatives; only allylic alcohols3e allow
the interception. See selected examples: (a) Asao, N. Synlett 2006, 1645.
(b) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2003,
42, 3504. (c) Asao, N.; Akiwa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004,
126, 7458. (d) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem.,
Int. Ed. 2003, 42, 4399. (e) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem.
Soc. 2009, 131, 2090. (f) Barluenga, J.; Va´zquez-Villa, H.; Ballesteros, A.;
Gonza´lez, J. M. AdV. Synth. Catal. 2005, 347, 526. (g) Barluenga, J.;
Va´zquez-Villa, H.; Ballesteros, A.; Gonza´lez, J. M. Org. Lett. 2003, 5, 4121.
(h) Hu, Z.-L.; Qian, W.-J.; Wang, S.; Wang, S.; Yao, Z.-J. Org. Lett. 2009,
11, 4676.
(4) For [3+2]-cycloadducts, see selected examples: (a) Kusama, H.; Funami,
H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2005,
127, 2709. (b) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett.
2004, 6, 605. (c) Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S.
Angew. Chem., Int. Ed. 2008, 47, 7505. (d) Oh, C. H.; Lee, S. M.; Hong,
C. S. Org. Lett. 2010, 12, 1308.
(5) For metal-allene bonding having the following dipolar character, see selected
examples:(a) Kusama, H.; Ebisawa, M.; Funami, H.; Iwasawa, N. J. Am.
Chem. Soc. 2009, 131, 16352. (b) Lee, J. H.; Toste, F. D. Angew. Chem.,
Int. Ed. 2007, 46, 912. (c) Lemiere, G.; Gandon, V.; Cariou, K.; Hours, A.;
Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem.
Soc. 2009, 131, 2993.
Equation 1 shows the use of this catalysis for a stereoselective
synthesis of a highly oxygenated molecule. A sequential treatment
of compound 6c with m-CPBA (1.5 equiv), followed by the
DIBAL-H cleavage of resulting acetal, gave triol derivative 11
(65%) as a single diastereomer.
In summary, we report the first success on the Au-catalyzed
tandem oxacyclization/[4+2]-cycloaddition cascade using ketone-
allene substrates to give highly substituted oxacyclics with excellent
stereocontrol. Control experiments reveal the involvement of
benzopyrilium intermediates (III) that is active for [4+2]-cycload-
dition reactions.9 In contrast to oxo-alkyne substrates,3 the resulting
cycloadducts are isolable and efficiently produced from a reasonable
scope of enol ethers. Efforts to realize the asymmetric version of
this catalysis is under current investigation.
(6) (a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (b)
Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (c) Shi, F.-Q.; Li, X.; Xia,
Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503. (d) Schwier,
T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 9868. (e) Cordonnier, M.-C.; Blanc, A.; Pale, P. Org.
Lett. 2008, 10, 1569.
(7) Previously, we attempted to synthesize allenyl aldehydes in pure form, but
its rapid decomposition in solution hampers its purification and isolation.
See: Teng, T.-M.; Lin, M.-S.; Vasu, D.; Bhunia, S.; Liu, T.-A.; Liu, R.-S.
Chem.sEur. J. 2010, 16, 4744.
Acknowledgment. The authors wish to thank the National
Science Council, Taiwan for supporting this work.
Supporting Information Available: Experimental procedures,
characterization data of new compounds. This material is available free
(8) The X-ray crystallographic data of compound 4b′ are provided in the
Supporting Information.
(9) (a) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488. (b) Jime´nez-
Nu´n˜ez, E.; Raducan, M.; Lauterbach, T.; Molawi, T.; Solorio, C. R.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2009, 48, 6152.
References
(1) Reviews for gold-catalyzed annulation and cycloaddition reactions, see:(a)
Patil, N. T.; Yamamoto, Y. Chem. ReV. 2008, 108, 3395. (b) Abu Sohel, S.
JA1043837
9
9300 J. AM. CHEM. SOC. VOL. 132, NO. 27, 2010