pubs.acs.org/joc
derivative, a process that typically requires about four syn-
Stereoselective r-Aminoallylation of Aldehydes with
Chiral tert-Butanesulfinamides and Allyl Bromides†
thetic operations.3 In this context, three-component reactions
involving carbonyl compounds, nitrogen nucleophiles, and
allylic nucleophiles are particularly attractive in assembling
both nitrogen-carbon and carbon-carbon bonds around the
carbonyl carbon. These reactions are referred to as R-amino-
allylations of carbonyl compounds,4 and several variations
have been reported for different nucleophiles.5 However, only
a few methods have been reported for the efficient preparation
of enantiomerically enriched homoallylic amines.6
ꢀ
ꢀ
ꢀ
Jose C. Gonzalez-Gomez,* Mohamed Medjahdi,
Francisco Foubelo,* and Miguel Yus
´
Departamento de Quımica Organica, Facultad de Ciencias
and Instituto de Sıntesis Organica (ISO), Universidad de
ꢀ
´
ꢀ
Alicante, Apdo. 99, 03080 Alicante, Spain
josecarlos.gonzalez@ua.es; foubelo@ua.es
Received July 13, 2010
Additions of nucleophiles to the CdN bond of enantio-
merically pure N-tert-butanesulfinyl imines are among the
most widely used approaches for the asymmetric synthesis of
amines.7 The ready availability of both enantiomers of tert-
butanesulfinamide in large-scale processes,8 the easy depro-
tection of the amine under acidic conditions, and a practical
procedure for recycling the chiral auxiliary have undoubt-
edly contributed to the widespread use of this approach.9 In
this context, the additions of allylmagnesium,10 allylzinc,11
and allylindium12 species to enantiopure N-tert-butanesulfi-
nylimines have also been exploited. We have been particu-
larly interested in the indium-mediated allylation reaction12b
due to the low toxicity of the metal and the high tolerance to a
wide range of functional groups, aqueous solvents, and
exposure to air.13 Continuing our interest in this topic, we
describe here the first one-pot R-aminoallylation of alde-
hydes with chiral tert-butanesulfinamide, allyl bromides,
and indium to provide homoallylic amines with high chemo-
and stereoselectivities (Scheme 1).
The combination of an aldehyde, an allylic bromide, and
tert-butanesulfinamide in the presence of indium metal
and titanium tetraethoxide allows straightforward access
to homoallylamine derivatives in high yields and stereo-
selectivities. Moreover, the synthetic utility of the enan-
tioenriched homoallylamine derived from n-decanal was
illustrated in a concise synthesis of (þ)-isosolenopsin. In
this context, similar homoallylamines has been recently
used by other groups in the synthesis of naturally occur-
ring alkaloids.
(3) For recent examples, see: (a) Kamal, A.; Vangala, S. R.; Reddy,
N. V. S.; Reddy, S. V. Tetrahedron: Asymmetry 2009, 20, 2589. (b) Kumar-G,
R. S. C.; Reddy, V.; Shankaraiah, G.; Babu, K. S.; Rao, J. M. Tetrahedron
Lett. 2010, 51, 1114.
€
(4) (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. (b) von
€
€
Wangelin, A. J.; Neumann, H.; Gordes, D.; Klaus, S.; Strubing, D.; Beller,
M. Chem.;Eur. J. 2003, 9, 4286.
(5) For representative examples, see: (a) Veenstra, S. J.; Schmid, P.
Tetrahedron Lett. 1997, 38, 997. (b) Petasis, N. A.; Zavialov, I. A. J. Am.
Chem. Soc. 1997, 119, 445. (c) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am.
Chem. Soc. 2004, 126, 7182. (d) Narsaiah, A. V.; Kumar, J. K.; Narsimha, P.
Synthesis 2010, 1609.
Chiral homoallylic amines are of great value as building
blocks in organic synthesis because the carbon-carbon
double bond can be readily converted to a variety of func-
tional groups and the free amine moiety can be diversely
functionalized. The importance of these versatile intermedi-
ates is emphasized by the prevalence of chiral R-branched
amines in natural products, biologically active molecules,
and ligands.1 The addition of allylmetals to CdN double
bonds is a useful synthetic method for the formation of
homoallylic amine derivatives.2 However, chiral homoallylic
amines are still very commonly prepared by enantioselective
allylation of carbonyl compounds and subsequent transfor-
mation of the resulting alcohol into the corresponding amine
(6) For a leading reference, see: Sugiura, M.; Mori, C.; Kobayashi, S.
J. Am. Chem. Soc. 2006, 128, 11038.
(7) For reviews on the asymmetric synthesis of amines via N-tert-buta-
nesulfinylimines, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem.
Res. 2002, 35, 984. (b) Morton, D.; Stockman, R. A. Tetrahedron 2006, 62,
ꢀ
8869. (c) Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A. Chem. Soc.
Rev. 2009, 38, 1162.
(8) (a) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317. (b) Weix, D. J.;
Ellman, J. A. Org. Synth. 2005, 82, 157.
(9) (a) Wakayama, M.; Ellman, J. A. J. Org. Chem. 2009, 74, 2646.
(b) Aggarwal, V. K.; Barbero, N.; McGarrigle, E. M.; Mickle, G.; Navas, R.;
ꢀ
Suarez, J. R.; Unthank, M. G.; Yar, M. Tetrahedron Lett. 2009, 50, 3482.
(10) (a) Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883.
(b) Grainger, R. S.; Welsh, E. J. Angew. Chem., Int. Ed. 2007, 46, 5377.
(11) (a) Sun, X.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979.
(b) Kolodney, G.; Sklute, G.; Perrone, S.; Knochel, P.; Marek, I. Angew.
Chem., Int. Ed. 2007, 46, 9291. (c) Sun, X.-W.; Liu, M.; Xu, M.-H.; Lin, G.-Q.
Org. Lett. 2008, 10, 1259.
(12) (a) Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Thornton-Pett, M.;
Sridharan, V. Chem. Commun. 2002, 1372. (b) Foubelo, F.; Yus, M. Tetra-
hedron: Asymmetry 2004, 15, 3823.
(13) For reviews, see: (a) Chauhan, K. K.; Frost, C. G. J. Chem. Soc.,
Perkin Trans. 1 2000, 3015. (b) Ranu, B. C. Eur. J. Org. Chem. 2000, 2347.
(c) Podlech, J.; Maier, T. C. Synthesis 2003, 633. (d) Nair, V.; Ros, S.; Jayan,
N. C.; Pillai, B. S. Tetrahedron 2004, 60, 1959.
†
ꢀ
Dedicated to Professor Carmen Najera on occasion of her 60th birthday.
(1) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.;
Stuermer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788.
(2) (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (b) Puentes,
C. O.; Kouznetsov, V. J. Heterocycl. Chem. 2002, 39, 595. (c) Kobayashi, S.;
Sugiura, M.; Ogawa, C. Adv. Synth. Catal. 2004, 346, 1023.
6308 J. Org. Chem. 2010, 75, 6308–6311
Published on Web 08/19/2010
DOI: 10.1021/jo101379u
r
2010 American Chemical Society