Article
Inorganic Chemistry, Vol. 50, No. 1, 2011 63
borylenes possess improved σ-donor and π-acceptor proper-
ties, thus leading to increased thermodynamic stability of the
coordination products with respect to homolytic cleavage of
the metal-borylene multiple bond.5
Scheme 1. Photoisomerization of Dimesityl(mesitylethynyl)borane in
Donor Solvent
Since the most general approach to group 6 terminal
borylene complexes [(OC)5MdB=N(SiMe3)2] (M=Cr
2b, W 2c) was reported in 19986 and subsequently extended to
various central metals and boron bound substituents7,3e
various of their reactivity patterns have been investigated.3
Most notably, these compounds have turned out to be con-
venient sources for borylenes B-R (R=N(SiMe3)2) that
could be efficiently transferred to suitable borylene acceptors
under standard conditions. Thus, transmetalation of boryl-
enes has been established,8 as well as borylene transfer to
unsaturated organic substrates such as alkenes9 and alky-
nes10 became possible for the first time. The latter, that is, the
borylene based functionalization of carbon-carbon triple
bonds, provides a facile access to borirenes, which are
isoelectronic with cyclopropenium cations, and thus, consti-
tute the smallest boron heterocycle that might exhibit 2π-
aromatic stabilization.11 Despite considerable fundamental
interest in aromatic and antiaromatic unsaturated boron-
containing heterocycles such as borirenes,11 boroles,12 and
borepins,13 only a limited number of synthetic routes to bori-
renes have been published,2,11d,14 and among these, most are
laborious and low yielding. Eisch et al. reported in 1987 the
first structurally characterized borirene compound 1, which
was synthesized via photoisomerization of diaryl(arylethy-
nyl)boranes (Scheme 1), and thus, provided experimental
evidence, that is, shortened B-C and elongated CdC bond
€
lengths, for the theoretically predicted Huckel aromaticity of
this class of compounds.14b,c Nonetheless, the scope of syn-
thetic approaches to borirenes is strongly limited with respect
to the available substituents at the boron atom.
The borylene based functionalization of carbon-carbon
triple bonds upon photolysis that we reported in 2005 pro-
vides a high yielding, straightforward access to borirene com-
pounds.10a In our further studies, this has turned out to be
applicable to a wide range of substrates such as alkynes,
diynes10b (Scheme 2), and thus a variety of borirene com-
pounds has been synthesized and fully characterized. The
proposed aromaticity of borirenes and extensive π-delocali-
zation over the BCC-ring has been confirmed by altered
endocyclic bond lengths and a significantly decreased barrier
to rotation about the exocyclic B-N double bond. This syn-
thetic strategy gives access to a new class of boron-based π-
conjugated systems with particularly interesting photophysi-
cal properties.15 As the introduction of a metal center into the
π-conjugated chain may introduce a range of different pro-
perties with regard to redox, magnetic, optical and electronic
characteristics,16 we recently reported the borylene based
functionalization of σ-alkynyl complexes of platinum, which
yielded such molecular frameworks involving d-block metals.17
Despite a somewhat broader range of well characterized
borirenes our vision of reactivity of these three-membered
(6) Braunschweig, H.; Kollann, C.; Englert, U. Angew. Chem. 1998, 110,
3355. Braunschweig, H.; Kollann, C.; Englert, U. Angew. Chem., Int. Ed. 1998,
37, 3179.
(7) (a) Braunschweig, H.; Colling, M.; Kollann, C.; Merz, K.; Radacki, K.
Angew. Chem. 2001, 113, 4327. Braunschweig, H.; Colling, M.; Kollann, C.;
Merz, K.; Radacki, K. Angew. Chem., Int. Ed. 2001, 38, 4198. (b) Braunschweig,
H.; Radacki, K.; Scheschkewitz, D.; Whittell, G. R. Angew. Chem. 2005, 117,
1685. Braunschweig, H.; Radacki, K.; Scheschkewitz, D.; Whittell, G. R. Angew.
Chem., Int. Ed. 2005, 44, 1658 (VIP). (c) Blank, B.; Braunschweig, H.; Colling-
Hendelkens, M.; Kollann, C.; Radacki, K.; Rais, D.; Uttinger, K.; Whittel, G.
Chem.-Eur. J. 2007, 13, 4770.
(8) (a) Braunschweig, H.; Colling, M.; Kollann, C.; Neumann, B.;
Stammler, H.-G. Angew. Chem. 2001, 113, 2359. Braunschweig, H.; Colling,
M.; Kollann, C.; Neumann, B.; Stammler, H.-G. Angew. Chem., Int. Ed. 2001,
40, 2298. (b) Braunschweig, H.; Colling, M.; Hu, C.; Radacki, K. Angew. Chem.
2003, 115, 215. Braunschweig, H.; Colling, M.; Hu, C.; Radacki, K. Angew.
Chem., Int. Ed. 2003, 42, 205. (c) Braunschweig, H.; Forster, M.; Radacki, K.
Angew. Chem. 2006, 118, 8036. Braunschweig, H.; Forster, M.; Radacki, K.
Angew. Chem., Int. Ed. 2006, 45, 2132. (d) Braunschweig, H.; Forster, M.;
Radacki, K.; Seeler, F.; Whittell, G. Angew. Chem. 2007, 119, 5304. Braunsch-
weig, H.; Forster, M.; Radacki, K.; Seeler, F.; Whittell, G. Angew. Chem., Int. Ed.
2007, 46, 5212. (e) Braunschweig, H.; Forster, M.; Kupfer, T.; Seeler, F. Angew.
Chem. 2008, 120, 6070. Braunschweig, H.; Forster, M.; Kupfer, T.; Seeler, F.
Angew. Chem., Int. Ed. 2008, 47, 5981.
(9) Braunschweig, H.; Dewhurst, R. D.; Herbst, T.; Radacki, K. Angew.
Chem. 2008, 120, 6067. Braunschweig, H.; Dewhurst, R. D.; Herbst, T.; Radacki,
K. Angew. Chem., Int. Ed. 2008, 47, 5978.
(10) (a) Braunschweig, H.; Herbst, T.; Rais, D.; Seeler, F. Angew. Chem.
2005, 117, 7627. Braunschweig, H.; Herbst, T.; Rais, D.; Seeler, F. Angew.
Chem., Int. Ed. 2005, 44, 7461. (b) Braunschweig, H.; Herbst, T.; Rais, D.;
Ghosh, S.; Kupfer, T.; Radacki, K.; Crawford, A.; Ward, R.; Marder, T.; Fern ndez,
I.; Frenking, G. J. Am. Chem. Soc. 2009, 131, 8989. (c) Braunschweig, H.;
Fernndez, I.; Frenking, G.; Radacki, K.; Seeler, F. Angew. Chem. 2007, 119,
5307. Braunschweig, H.; Fernndez, I.; Frenking, G.; Radacki, K.; Seeler, F.
Angew. Chem., Int. Ed. 2007, 46, 5215.
(11) (a) Volpin, M. E.; Koreshkov, Y. D.; Dulova, V. G.; Kursanov,
D. N. Tetrahedron 1962, 18, 107; For INDO calculations, see:. (b) Pittman,
C. U.; Kress, A.; Patterson, T. B.; Walton, P.; Kispert, L. D. J. Org. Chem. 1974,
39, 373. (c) Allinger, N. L.; Siefert, J. H. J. Am. Chem. Soc. 1975, 97, 752; For ab
initio calculations, see:. (d) Krogh-Jespersen, K.; Cremer, D.; Dill, J. D.; Pople,
J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589.
(13) (a) Eisch, J. J.; Galle, J. E. J. Am. Chem. Soc. 1975, 97, 4436. (b) Ashe,
A. J., III; Drone, F. J. J. Am. Chem. Soc. 1987, 109, 1879. (c) Sugihara, Y.; Yagi,
T.; Murata, I.; Imamura, A. J. Am. Chem. Soc. 1992, 114, 1479. (d) Ashe, A. J.,
III; Kampf, J. W.; Klein, W.; Rousseau, R. Angew. Chem. 1993, 105, 1112. Ashe,
A. J., III; Kampf, J. W.; Klein, W.; Rousseau, R. Angew. Chem., Int. Ed. 1993,
32, 1065. (e) Schulman, J.; Disch, R. L. Organometallics 2000, 19, 2932.
(f) Mercier, L. G.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2009, 48, 6108.
(14) (a) Pues, C.; Berndt, A. Angew. Chem. 1984, 96, 306. Pues, C.; Berndt,
A. Angew. Chem., Int. Ed. Engl. 1984, 23, 313. (b) Eisch, J. J.; Shafii, B.;
Rheingold, A. L. J. Am. Chem. Soc. 1987, 109, 2526. (c) Eisch, J. J.; Shafii, B.;
Odom, J. D.; Rheingold, A. L. J. Am. Chem. Soc. 1990, 112, 1847.
(15) (a) Matsumi, N.; Chujo, Y. In Contemporary Boron Chemistry, Spec.
Publ. No. 253; Davidson, M. G., Hughes, A. K., Marder, T. B., Wade, K., Eds.;
Royal Society of Chemistry: Cambridge, 2000; pp 51-58; (b) Entwistle, C. D.;
Marder, T. B. Angew. Chem. 2002, 114, 3051. Entwistle, C. D.; Marder, T. B.
(12) (a) Eisch, J. J.; Hota, N. K.; Kozima, S. J. J. Am. Chem. Soc. 1969, 91,
4575. (b) Eisch, J. J.; Galle, J. E.; Kozima, S. J. Am. Chem. Soc. 1986, 108, 379.
(c) Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B. Angew. Chem. Int.
€
Angew. Chem. 2002, 41, 2927. (c) Jackle, F. J. Inorg. Organomet. Polym.
Mater. 2005, 15, 293. (d) Gabel, D. In Science of Synthesis: Houben-Weyl
Methods of Molecular Transformation; Kaufmann, D., Matteson, D. S., Eds.;
Verlag G. T. Thieme: Stuttgart, 2005; Vol. 6, p 1277.
(16) Long, N. J.; Williams, C. K. Angew. Chem. 2003, 115, 2690. Long,
N. J.; Williams, C. K. Angew. Chem., Int. Ed. 2003, 42, 2586.
(17) Braunschweig, H.; Ye, Q.; Radacki, K. Chem. Commun. 2009, 6979.
ꢀ
Ed. 1995, 34, 337. (d) Braunschweig, H.; Fernandez, I.; Frenking, G.; Kupfer, T.
ꢀ
Angew. Chem. 2008, 120, 1977. Braunschweig, H.; Fernandez, I.; Frenking, G.;
Kupfer, T. Angew. Chem., Int. Ed. 2008, 47, 1951. (e) Braunschweig, H.; Kupfer,
T. Chem. Commun. 2008, 4487. (f) Braunschweig, H.; Chiu, C.-W.; Radacki, K.;
Brenner, P. Chem. Commun. 2010, 916.