K.-H. Lee et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5567–5571
5571
Table 5
References and notes
Pharmacokinetic parameters of the compound 19ra after single oral and IV (intra-
venous) administration to rat
1. Millan, M. J. Pharmacol. Ther. 2006, 110, 135.
2. Rosenzweig-Lipson, S.; Beyer, C. E.; Hughes, Z. A.; Khawaja, X.; Rajarao, S. J.;
Malberg, J. E.; Rahman, Z.; Ring, R. H.; Schechter, L. E. Pharmacol. Ther. 2007,
113, 134.
Parameters
PO (10 mg/kg, n = 4)
IV (10 mg/kg, n = 4)
Cmax (ng/mL)
tmax (h)
t1/2 (h)
AUCall (ng h/mL)
AUCinf (ng h/mL)
CL (mL/kg/min)
Vss (L/kg)
334
3834
3. Nemeroff, C. B. Focus 2008, 6, 3.
0.75
5.48
1276
1793
4. Hull, E. M.; Muschamp, J. W.; Sato, S. Physiol. Behav. 2004, 83, 291.
5. El-Ghundi, M.; O’Dowd, B. F.; George, S. R. Rev. Neurosci. 2007, 18, 37.
6. Zisook, S.; Rush, A. J.; Haight, B. R.; Clines, D. C.; Rockett, C. B. Biol. Psychiatry
2006, 59, 203.
7. Papakostas, G. I.; Worthington, J. J., III; Iosifescu, D. V.; Kinrys, G.; Burns, A. M.;
Fisher, L. B.; Homberger, C. H.; Mischoulon, D.; Fava, M. Depress. Anxiety 2006,
23, 178.
3.12
3833
4150
42
6.8
% Bioavailability
43.2
a
8. Breuer, M. E.; Chan, J. S.; Oosting, R. S.; Groenink, L.; Korte, S. M.; Campbell, U.;
Schreiber, R.; Hanania, T.; Snoeren, E. M.; Waldinger, M.; Olivier, B. Eur.
Neuropsychopharmacol. 2008, 18, 908.
HCl salt was used.
9. Liang, Y.; Shaw, A. M.; Boules, M.; Briody, S.; Robinson, J.; Oliveros, A.; Blazar,
E.; Williams, K.; Zhang, Y.; Carlier, P. R.; Richelson, E. J. Pharmacol. Exp. Ther.
2008, 327, 573.
10. Liang, Y.; Richelson, E. Psychiatry 2008, 15, 50.
11. Tella, S. R.; Ladenheim, B.; Cadet, J. L. J. Pharmacol. Exp. Ther. 1997, 281, 508.
12. Daws, L. C. Pharmacol. Ther. 2009, 121, 89.
significantly potentiated the syndrome induced by the 5-HT pre-
cursor at the dose of 10 mg/kg. DOV216,303 showed a similar effi-
cacy at the dose of 60 mg/kg.
Oral administration of 19r significantly reduced the immobility
time in the FST. Compounds 5 (DOV216,303) and 3 (venlafaxine)
were slightly less potent than 19r. In dose–response assays of
the TST, 19r induced a significant and marked reduction of mice
immobility at the dose of 3 mg/kg. Venlafaxine (3) mimicked these
actions, reaching statistical significance at the dose of 7 mg/kg.
Compound 19r induced the marked antidepressant-like effects
and was the most potent drug in both FST and TST models. Com-
pound 19r, 3, and 5 significantly reduced the number of writhes
and marbles buried at the dose of 30 mg/kg. Significant but slight
increases in spontaneous locomotor activity in mice were observed
at 1 h after the oral administration of 19r, 3, and 5 at the test doses.
Antidepressant-like activity of 19r does not appear to be due to
motor stimulation since 19r was active in the forced swim test at
doses that do not increase motor activity. On the other hand,
DOV 216,303 has been shown to have modest but statistically sig-
nificant increases in motor activity at doses that produce meaning-
ful reductions in immobility in the forced swim test.13 SSRIs and
SNRIs were reported to enhance the locomotor activity of mice ex-
posed to a novel environment.36
With promising in vitro and in vivo results in hand, pharmaco-
kinetic properties of 19r were evaluated, which is summarized in
Table 5.
After oral administration of a 10 mg/kg dose of 19r to rats, a
Cmax of 334 ng/mL was observed at 0.75 h. The elimination half-life
for 19r following oral administration was 5.48 h in rats. Compound
19r showed good oral bioavailability (F = 43.2%) and high blood
clearance (42 mL/kg/min) in rats.
In summary, we identified a series of 3-aryl-3-azolylpropan-1-
amine derivatives as triple reuptake inhibitors for the treatment
of depressive disorders. SAR studies were performed via variation
of azole group and modification of substituents on aryl group.
Based on the outcomes of in vitro studies and in animal models,
19r was identified as a lead compound for this antidepressant pro-
gram. The compound 19r was also active in animal models predic-
tive of anxiolytic and analgesic activity. Further studies on the
development of potent triple reuptake inhibitors will be reported
in due course.
13. Skolnick, P.; Krieter, P.; Tizzano, J.; Popik, P.; Czobor, P.; Lippa, A. CNS Drug Rev.
2006, 12, 123.
15. HPLC separation conditions for isomers of 13c: (Chiralpak-AD column
(4.6 ꢁ 250 mm); hexane/isopropanol (0.1% DEA) = 90/10; flow rate = 1 mL/
min; column temperature = 27 °C); isomer 1 (13d) 15.45 min, isomer 2 (13e)
16.79 min.
16. Gomtsyan, A.; Koenig, R.; Lee, C.-H. J. Org. Chem. 2001, 66, 3613.
17. HPLC separation conditions for isomers of 19q and 19t: (Chiralpak-AD column
(4.6 ꢁ 250 mm); hexane/isopropanol (0.1% DEA) = 90/10; flow rate = 1 mL/
min; column temperature = 27 °C); isomer 1 (19r) 8.64 min, isomer 2 (19s)
9.57 min; isomer 1 (19u) 8.36 min, isomer 2 (19v) 8.97 min.
18. Kamal, A.; Khanna, G. B. R.; Ramu, R. Tetrahedron: Asymmetry 2002, 13, 2039.
19. Binding at native rat SERTs: binding affinity was determined by competition
with [3H]paroxetine (PerkinElmer Life Sciences, LesUlis, France). Freshly
prepared membranes of rat frontal cortex were homogenized with a Polytron
and then centrifuged twice at 20,000g. The pellet was resuspended each time
in incubation buffer. Membranes were incubated in triplicate with 2 nM
[3H]paroxetine and competing ligand in a final volume of 0.4 mL for 2 h at
25 °C. The incubation buffer contained 50 nM Tris–HCl (pH 7.4), 120 nM NaCl,
and 5 mM KCl. Nonspecific binding was defined with 10 mM citalopram.
Determination of [3H]5-HT, [3H]NE, and [3H]DA uptake: all tests were
conducted by MDS Pharma Services-Taiwan Ltd, Taipei, Taiwan.
20. The rat and human microsomal stability assays were able to accurately
determine half-lives of up to 60 min.
21. Porsolt, R. D.; Le Pichon, M.; Jalfre, M. Nature 1977, 266, 730.
22. DOV216,303 was prepared in house and submitted to assay.
23. Aubin, N.; Barneoud, P.; Carter, C.; Caille, D.; Sontag, N.; Marc, C.; Lolivier, J.;
Gardes, A.; Perron, C.; Le Kim, A.; Charieras, T.; Pandini, M.; Burnier, P.; Puech,
F.; Jegham, S.; George, P.; Scatton, B.; Curet, O. J. Pharmacol. Exp. Ther. 2004, 310,
1171.
24. Boulton, S.; Handley, L. Psychopharmacologia 1972, 31, 205.
25. Nakagawasai, O.; Arai, Y.; Satoh, S. E.; Satoh, N.; Neda, M.; Hozumi, M.; Oka, R.;
Hiraga, H.; Tadano, T. Neurotoxicology 2004, 25, 223.
26. Stéru, L.; Chermat, R.; Thierry, B.; Simon, P. Psychopharmacology 1985, 85, 367.
27. Ripoll, N.; David, D. J.; Dailly, E.; Hascoët, M.; Bourin, M. Behav. Brain Res. 2003,
143, 193.
28. Stéru, L.; Chermat, R.; Thierry, B.; Mico, J. A.; Lenegre, A.; Steru, M.; Simon, P.;
Porsolt, R. D. Prog. Neuropsychopharmacol. Biol. Psychiatry 1987, 11, 659.
29. Korzeniewska-Rybicka, I.; Płaz´nik, A. Pharmacol. Biochem. Behav. 1988, 59, 331.
30. Rojas-Corrales, M. O.; Casas, J.; Moreno-Brea, M. R.; Gibert-Rahola, J.; Micó, J. A.
Eur. Neuropsychopharmacol. 2003, 13, 355.
31. Aoki, M.; Tsuji, M.; Takeda, H.; Harada, Y.; Nohara, J.; Matsumiya, T.; Chiba, H.
Eur. J. Pharmacol. 2006, 550, 78.
32. Abe, M.; Nakai, H.; Tabata, R.; Saito, K. I.; Egawa, M. Jpn. J. Pharmacol. 1998, 76,
297.
33. Takeuchi, H.; Yatsugi, S.; Yamaguchi, T. Jpn. J. Pharmacol. 2002, 90, 197.
34. McKim, W. A. Drugs and Behavior: Psychomotor Stimulants; Prentice-Hall: New
Jersey, 2000. p 236.
35. Rodgers, R. J.; Randall, J.; Kelway, B. Neurosci. Lett. 1985, 58, 97.
36. Brocco, M.; Dekeyne, A.; Veiga, S.; Girardon, S.; Millan, M. J. Pharmacol. Biochem.
Behav. 2002, 71, 667.
Acknowledgment
The research was supported by a grant from the Korea Health
Industry Development Institute (KHIDI).