M. Walter et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5883–5886
5885
Table 1
tration range (Ki values of 110 nM and 187 nM, respectively). The
introduction of a central triazole ring in compound 7 resulted in
a high affine ligand with a Ki value of 18 nM. Most probably, the
incorporation of a further amino function had a higher impact on
this improvement due to beneficial interactions with the receptor’s
binding pocket (Glu206).18 Additionally, the steric enlargement of
the molecule possibly allows positive effects in ligand–receptor
binding.
We successfully introduced polar azole cycles containing one to
three nitrogen atoms into the central core of the hH3R antagonist
structural blueprint. According to our previous work the presented
small series of hH3R ligands emphasised the importance of the
azole substitution pattern and the lower impact of the type of het-
erocycle on receptor binding. Extending the variation spectrum of
the incorporated azoles, the presented ligands enlarge the struc-
ture–activity relationships deduced from the former thiazole series
and indicated again the enlargement of the molecule by lipophilic
(3) and additional basic functions (7) as major reasons for high
affine H3R ligands. As linker between spacer and core element
the thioether moiety resulted to be comparable to the oxyether
of the thiazol-2-yl ether derivatives (compounds 3 and ST-1025).
By introducing different C–C- and C–S-coupled heterocycles we
confirmed the acceptance of polar moieties in the central core of
the structural blueprint. Taken together the results of both series
of azole derivatives we could establish a new structural class of
hH3R ligands containing polar heteroaromatic ring systems as core
element.
In vitro binding affinities of azole derivatives 1–7 to hH3R
N
A
X
R1
Z
Y
R2
Compd
A
X
O
Y
C
Z
R1
R2
Ki hH3Ra (nM)
63
1
CH2
N
H
7
N
2
3
4
CH2
S
N
S
N
C
C
O
N
N
110 17
7.4 1.1
>1000
O
S
S
CH3
CH3
5
6
S
S
O
O
C
N
N
32
5
N
187 15
18 3b
N
N
7
S
N
N
N
N
ST-1025
ST-1093
O
O
S
S
C
C
N
N
11.2 2.1
N
N
20
1
Pitolisant (Tiprolisant, BF2.649)c
2.7 0.5
Acknowledgements
a
[
125I]Iodoproxyfan competitive binding assay on HEK-293 cells stably
expressing hH3R; Kd = 44 pM; values are means SD of one experiment performed
This work was partially supported by the COST action BM0806
‘Recent Advances in Histamine Receptor H4R Research’, the Else
Kröner-Fresenius-Stiftung, and the Hesse LOEWE projects LiFF
and NeFF.
at least in triplicates.
b
[3H]Methylhistamine competitive binding assay on HEK-293 cells stably
expressing hH3R; Kd = 2.98 nM; mean value SD of two independent experiments
performed in duplicates.
c
Ref. 8.
References and notes
1. Raddatz, R.; Tao, M.; Hudkins, R. L. Curr. Top. Med. Chem. 2010, 10, 153.
2. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Nature 1983, 302, 832.
3. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Hurvar, A.;
Jackson, M. R.; Erlander, M. G. Mol. Pharmacol. 1999, 55, 1101.
respectively). Apparently, the substitution of the trimethylene-oxy
spacer used in our previous work by a tetramethylene (buta-1,4-
diyl) spacer do not lead to an enhancement in affinity. The C–C
coupling of the heterocycle displayed a drawback compared to
the most affine thiazol-2-yl ether derivatives.
4. Sander, K.; Kottke, T.; Stark, H. Biol. Pharm. Bull. 2008, 31, 2163.
5. Sander, K.; von Coburg, Y.; Camelin, J.-C.; Ligneau, X.; Rau, O.; Schubert-
Zsilavecz, M.; Schwartz, J.-C.; Stark, H. Bioorg. Med. Chem. Lett. 2010, 20, 1581.
6. Berlin, M.; Boyce, C. W. Expert Opin. Ther. Patents 2007, 17, 675.
7. (a) Swanson, D. M.; Shah, C. R.; Lord, B.; Morton, K.; Dvorak, L. K.; Mazur, C.;
Apodaca, R.; Xiao, W.; Boggs, J. D.; Feinstein, M.; Wilson, S. J.; Barbier, A. J.;
Bonaventure, P.; Lovenberg, T. W.; Carruthers, N. I. Eur. J. Med. Chem. 2009, 44,
4413; (b) Denonne, F.; Atienzar, F.; Célanire, S.; Christophe, B.; Delannois, F.;
Delaunoy, C.; Delporte, M.-L.; Durieu, V.; Gillard, M.; Lallemand, B.; Lamberty,
Y.; Lorent, G.; Vanbellinghen, A.; Van houtvin, N.; Verbois, V.; Provins, L.
ChemMedChem 2010, 5, 206; (c) Rao, A. U.; Palani, A.; Chen, X.; Huang, Y.;
Aslanian, R. G.; West, R. E., Jr.; Williams, S. M.; Wu, R.-L.; Hwa, J.; Sondey, C.;
Lachowicz, J. Bioorg. Med. Chem. Lett. 2009, 19, 6176.
8. Ligneau, X.; Perrin, D.; Landais, L.; Camelin, J.; Calmels, T. P.; Berrebi-Bertrand,
I.; Lecomte, J. M.; Parmentier, R.; Anaclet, C.; Lin, J. S.; Bertaina-Anglade, V.; La
Rochelle, C. D.; d’Aniello, F.; Rouleau, A.; Gbahou, F.; Arrang, J. M.; Ganellin, C.
R.; Stark, H.; Schunack, W.; Schwartz, J.-C. J. Pharmacol. Exp. Ther. 2007, 320,
365.
9. Zaragoza, F.; Stephensen, H.; Knudsen, S. M.; Pridal, L.; Wulff, B. S.; Rimvall, K. J.
Med. Chem. 2004, 47, 2833.
10. Meier, G.; Apelt, J.; Reichert, U.; Graßmann, S.; Ligneau, X.; Elz, S.; Leurquin, F.;
Ganellin, C. R.; Schwartz, J.-C.; Schunack, W.; Stark, H. Eur. J. Pharm. Sci. 2001,
13, 249.
Ganellin et al. investigated the bioisosterical replacement of
oxy- and thioethers, which both showed similar receptor bind-
ing.17 According to this finding we went on with C–S-coupled azole
groups to obtain further information on the binding behaviour of
the heterocyclic derivatives and determine the role of the ether
function for hH3R binding. Compound 3 with a Ki value of 7.4 nM
showed comparable affinity to that of the oxyether analogue
ST-1025 (Ki value of 11.2 nM)11 in the low nanomolar concentra-
tion range. The promising substitution pattern of compound 3
was kept constant, whereas the thiazole group was bioisosterically
replaced by an oxazole ring. This variation led to an impairment of
receptor binding in compound 5 (Ki value of 32 nM). However, the
advantage in receptor binding of the thiazole elements is restricted
to their substituents. For instance, acylated thiazole derivative 4
showed clearly decreased affinity. According to our first series of
thiazol-2-yl ether derivatives enlargement of the molecule by lipo-
philic moieties again led to enhancement in receptor binding
(compounds 3 and 5 vs 4). Additionally, the abolishment of poten-
11. Walter, M.; von Coburg, Y.; Isensee, K.; Sander, K.; Ligneau, X.; Camelin, J.-C.;
Schwartz, J.-C.; Stark, H. Bioorg. Med. Chem. Lett., 2010, doi:10.1016/
12. Isensee, K.; Amon, M.; Garlapati, A.; Ligneau, X.; Camelin, J.-C.; Capet, M.;
Schwartz, J.-C.; Stark, H. Bioorg. Med. Chem. Lett. 2009, 19, 2172.
13. Delépine, M. Compt. Rend. Acad. Sci. Paris. 1897, 124, 292.
tial p–p interactions or the change of electronic properties by sub-
stitution of the phenyl ring could have resulted in reduced affinity
of compound 4.
14. (a) Balaban, A. T.; Bîrladeanu, L.; Bally, I.; Frangopol, P. T. Tetrahedron 1963, 19,
2199; (b) Godfrey, A. G.; Brooks, D. A.; Hay, L. A.; Peters, M.; McCarthy, J. R.;
Mitchell, D. J. Org. Chem. 2003, 68, 2623.
15. Grassmann, S.; Sadek, B.; Ligneau, X.; Elz, S.; Ganellim, C. R.; Arrang, J. M.;
Schwartz, J. C.; Stark, H.; Schunack, W. Eur. J. Pharm. Sci. 2002, 15, 367.
Compounds 2, 6 and 7 contained pyridine as substituent of the
heterocycle. The oxadiazoles 2 (C–C-coupled) and 6 (C–S-coupled)
showed moderate receptor binding in the submicromolar concen-