ORGANIC
LETTERS
2010
Vol. 12, No. 21
5016-5019
Versatile Configuration-Encoded
Strategy for Rapid Synthesis of
1,5-Polyol Stereoisomers
Gregory K. Friestad* and Gopeekrishnan Sreenilayam
Department of Chemistry, UniVersity of Iowa, Iowa City, Iowa 52242, United States
Received September 8, 2010
ABSTRACT
The isolated stereogenic centers of 1,5-polyol-containing natural products present challenges to synthesis and structure determination. To
address this problem, a configuration-encoded strategy defines each configuration within a simple 4-(arylsulfonyl)butyronitrile building block,
a repeat unit that is reliably and efficiently coupled in iterative fashion to afford 1,5-polyols of defined stereochemistry. For example, the
C27-C40 subunit of tetrafibricin is prepared in five steps and 42% yield. This strategy is amenable to rapid and unambiguous preparation of
all configurational permutations of 1,5-polyols with equal facility.
Chiral 1,5-polyol substructures are present in natural products
offering a wide range of biological activities (Figure 1), such
as tetrafibricin (nonpeptide fibrinogen receptor antagonist)1
and muricapentocin (selective cytotoxicity for colon cancer
cell line HT-29: ED50 71 ng/mL),2 as well as lydicamycin
(antibiotic active against multidrug resistant strains),3 sporm-
inarin B (antifungal),4 and amphidinol 3 (hemolytic and
antifungal).5
Configurational assignments of isolated stereogenic centers
in the 1,5-polyol sectors of these natural products present
significant challenges, and in fact, many related compounds
lack complete assignments of stereostructure.2-4,6,7
Application of aldol bond construction strategies8 to 1,5-
polyols would encounter daunting regio- and stereoselection
problems in dehydration of alternating hydroxyl functions. New
synthetic strategies tailored specifically for access to 1,5-polyols
(1) Isolation, structure, and biological activity: (a) Kamiyama, T.; Umino,
T.; Fujisaki, N.; Fujimori, K.; Satoh, T.; Yamashita, Y.; Ohshima, S.;
Watanabe, J.; Yokose, K. J. Antibiot. 1993, 46, 1039–1036. (b) Kobayashi,
Y.; Czechtizky, W.; Kishi, Y. Org. Lett. 2003, 5, 93–96. (c) Satoh, T.;
Kouns, W. C.; Yamashita, Y.; Kamiyama, T.; Steiner, B. Biochem. J. 1994,
301, 785–791. Synthetic studies: (d) Bouzbouz, S.; Cossy, J. Org. Lett.
2004, 6, 3469–3472. (e) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533–
536. (f) Zhang, K.; Curran, D. P. Synlett 2010, 667–671.
(4) Mudur, S. V.; Gloer, J. B.; Wicklow, D. T. J. Antibiot. 2006, 59,
500–506
.
(5) (a) Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. J. Am.
Chem. Soc. 1991, 113, 9859–9861. (b) Murata, M.; Matsuoka, S.;
Matsumori, N.; Paul, G. K.; Tachibana, K. J. Am. Chem. Soc. 1999, 121,
870–871. (c) Paquette, L. A.; Chang, S.-K. Org. Lett. 2005, 7, 3111–3114.
(d) Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411–1414. (e)
(2) Kim, G.-S.; Zeng, L.; Alali, F.; Rogers, L. L.; Wu, F.-E.; McLaugh-
lin, J. L.; Sastrodihardjo, S. J. Nat. Prod. 1998, 61, 432–436.
(3) Hayakawa, Y.; Kanamaru, N.; Morisaki, N.; Seto, H. Tetrahedron
Lett. 1991, 32, 213–216. Tamotsu, F.; Keitaro, E.; Tomomitsu, S.; Hiroko,
H.; Hirayasu, O.; Noriko, S.; Takeshi, F.; Hideo, N.; Yasuhiro, I. J. Antibiot.
2002, 55, 873–880.
BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3, 1451–1454.
(6) Plaza, A.; Baker, H. L.; Bewley, C. A. J. Nat. Prod. 2008, 71, 473–
477
.
(7) A novel liposomal circular dichroism method has been devised to
address the difficult structural analyses: MacMillan, J. B.; Molinski, T. F.
J. Am. Chem. Soc. 2004, 126, 9944–9945
.
10.1021/ol1021417 2010 American Chemical Society
Published on Web 10/12/2010