ORGANIC
LETTERS
2010
Vol. 12, No. 23
5558-5560
Palladium-Catalyzed Intramolecular
Carbopalladation/Cyclization Cascade:
Access to Polycyclic N-Fused
Heterocycles
Dmitri Chernyak and Vladimir Gevorgyan*
Department of Chemistry, UniVersity of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7061, United States
Received October 9, 2010
ABSTRACT
An efficient palladium-catalyzed intramolecular carbopalladation/cyclization cascade toward tetra- and pentacyclic N-fused heterocycles has
been developed. This transformation proceeds via the palladium-catalyzed coupling of aryl halides with internal propargylic esters or ethers
followed by the 5-endo-dig cyclization leading to polycyclic pyrroloheterocycles in moderate to excellent yields.
Nitrogen-containing heteroaromatic molecules and their
analogues are pharmaceutically significant scaffolds,
widely present in naturally occurring and synthetic
biologically active molecules.1 For example, molecules
containing an indolizine motif, such as Lamellarin D2 and
other closely related cores,3 exhibit a wide array of
biological activities, including human DNA topoisomerase
I inhibition,4 the ability to reverse multidrug resistance,5
and the ability to induce apoptosis through a mitochondria-
mediated pathway toward a broad range of cancer cell
lines.6 These significant biological activities brought
substantial attention to the synthesis of Lamellarins and
their analogues.7,8 Although several routes toward their core
exist, new methods allowing for the efficient construction
of heterocycles, particularly those with modified core and
different substitution patterns, are in high demand. We have
recently reported a two-component coupling methodology
toward fully substituted N-fused heterocycles.9,10 Although
quite general with respect to the heterocyclic core, this
(6) (a) Ballot, C.; Kluza, J.; Lancel, S.; Martoriati, A.; Hassoun, S. M.;
Mortier, L.; Vienne, J. C.; Briand, G.; Formstecher, P.; Bailly, C.; Neviere,
R.; Marchetti, P. Apoptosis 2010, 15, 769. (b) Ballot, C.; Kluza, J.;
Martoriati, A.; Nyman, U.; Formstecher, P.; Joseph, B.; Bailly, C.; Marchetti,
(1) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. ReV. 2008, 108,
264.
P. Mol. Cancer Ther. 2009, 8, 3307
.
(2) Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.;
Manzanares, I.; Cuevas, C.; Bailly, C. Cancer Res. 2003, 63, 7392.
(3) (a) Bailly, C. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 363.
(b) Pla, D.; Francesch, A.; Calvo, P.; Cuevas, C.; Aligue, R.; Albericio, F.;
Alvarez, M. Bioconjugate Chem. 2009, 20, 1100.
(7) See for example: (a) Ohta, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. J.
Org. Chem. 2009, 74, 8143. (c) Pla, D.; Marchal, A.; Olsen, C. A.; Albericio,
F.; Alvarez, M. J. Org. Chem. 2005, 70, 8231
.
(8) For recent synthetic approches toward novel hybrids, see: (a)
Ploypradith, P.; Petchmanee, T.; Sahakitpichan, P.; Litvinas, N. D.;
Ruchirawat, S. J. Org. Chem. 2006, 71, 9440. (b) Shen, L.; Yang, X.; Yang,
(4) Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.; Ishibashi,
F.; Bailly, C.; Gago, F. J. Med. Chem. 2005, 48, 3796.
(5) (a) Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith,
P. ChemMedChem 2009, 4, 457. (b) Pla, D.; Marchal, A.; Olsen, C. A.;
Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. J. Med. Chem. 2006,
49, 3257.
B.; He, Q.; Hu, Y. Eur. J. Med. Chem. 2010, 45, 11
(9) For silyl ether tether approach in Pd-catalyzed biaryl coupling, see:
.
(a) Huang, C.; Gevorgyan, V. Am. Chem. Soc. 2009, 131, 10844. (b) Huang,
C.; Gevorgyan, V. Org. Lett. 2010, 12, 2442
.
(10) Chernyak, D.; Skontos, C.; Gevorgyan, V. Org. Lett. 2010, 12, 3242
.
10.1021/ol102447s 2010 American Chemical Society
Published on Web 11/08/2010