3 (a) M. J. Sanganee, P. G. Steel and D. K. Whelligan, J. Org.
Chem., 2003, 68, 3337; (b) L. Hevesi, M. Dehon, R. Crutzen and
A. Lazarescu-Grigore, J. Org. Chem., 1997, 62, 2011;
(c) C. Krempner, H. Reinke and R. Wustrack, Inorg. Chem.
Commun., 2007, 10, 239; (d) G. Gutekunst and A. G. Brook,
J. Organomet. Chem., 1982, 225, 1.
and Y. Kondo, Eur. J. Org. Chem., 2008, 1161; (l) D. Karshtedt,
A. T. Bell and T. D. Tilley, Organometallics, 2006, 25, 4471;
(m) M. Murata, S. Watanabe and Y. Masuda, Tetrahedron Lett.,
1999, 40, 9255; (n) A. Ochida, S. Ito, T. Miyahara, H. Ito and
M. Sawamura, Chem. Lett., 2006, 294; (o) M. Murata and
Y. Masuda, J. Synth. Org. Chem. Jpn., 2010, 68, 845.
4 M. Aggarwal, M. A. Ghuman and R. A. Geanangel, Main Group
Met. Chem., 1991, 14, 26.
5 (a) J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester,
2004; (b) E. Negishi, Organopalladium Chemistry, Wiley-Interscience,
New York, 2002, vol. I and II; (c) L. S. Hegedus, in Organometallics
in Synthesis, ed. M. Schlosser, Wiley, Chichester, 2002.
6 L. Pauling, The Nature of the Chemical Bond, Cornell University
Press, 3rd edn, 1960.
7 For reviews, see: (a) U. Schubert, Angew. Chem., Int. Ed. Engl.,
1994, 33, 419; (b) H. K. Sharma and K. H. Pannell, Chem. Rev.,
1995, 95, 1351; (c) M. Suginome and Y. Ito, J. Chem. Soc.,
Dalton Trans., 1998, 1925.
8 (a) K. Okamoto and T. Hayashi, Chem. Lett., 2008, 108;
(b) H. Hashimoto, A. Matsuda and H. Tobita, Chem. Lett.,
2005, 1374; (c) H. Koshikawa, M. Okazaki, S.-i. Matsumoto,
K. Ueno, H. Tobita and H. Ogino, Chem. Lett., 2005, 1412;
(d) H. Hashimoto, A. Matsuda and H. Tobita, Organometallics,
2006, 25, 472; (e) M. Hirotsu, T. Nunokawa and K. Ueno,
Organometallics, 2006, 25, 1554; (f) K. Okamoto and T. Hayashi,
Org. Lett., 2007, 9, 5067; (g) H. Tobita, A. Matsuda,
H. Hashimoto, K. Ueno and H. Ogino, Angew. Chem., Int. Ed.,
2004, 43, 221.
9 (a) Y. Yamanoi, J. Org. Chem., 2005, 70, 9607; (b) Y. Yamanoi
and H. Nishihara, Tetrahedron Lett., 2006, 47, 7157;
(c) Y. Yamanoi, T. Taira, J.-i. Sato, I. Nakamula and
H. Nishihara, Org. Lett., 2007, 9, 4543; (d) Y. Yamanoi and
H. Nishihara, J. Org. Chem., 2008, 73, 6671; (e) Y. Yamanoi and
H. Nishihara, J. Synth. Org. Chem. Jpn., 2009, 67, 778;
(f) Y. Yabusaki, N. Ohshima, H. Kondo, T. Kusamoto,
Y. Yamanoi and H. Nishihara, Chem.–Eur. J., 2010, 16, 5581;
(g) M. Murata, H. Ohara, R. Oiwa, S. Watanabe and Y. Masuda,
Synthesis, 2006, 1771; (h) A. Hamze, O. Provot, M. Alami and
J.-D. Brion, Org. Lett., 2006, 8, 931; (i) W. Gu, S. Liu and
R. B. Silverman, Org. Lett., 2002, 4, 4171; (j) S. Liu, W. Gu,
D. Lo, X. Ding, M. Ujiki, T. E. Adrian, G. A. Soff and
R. B. Silverman, J. Med. Chem., 2005, 48, 3630; (k) M. Iizuka
10 (Me3Si)3SiH is generally used as a reagent in a variety of radical
based transformations. For reviews, see: (a) C. Chatgilialoglu,
C. Ferreri and T. Gimisis, in The Chemistry of Organic Silicon
Compounds, ed. Z. Rappoport and Y. Apeloig, Wiley, Chichester,
1998, vol. 2, ch. 25, pp. 1539–1579; (b) C. Chatgilialoglu,
Organosilanes in Radical Chemistry, Wiley, Chichester, 2004.
11 The coupling reaction of aryl bromide or chloride with tris-
(trimethylsilyl)silane did not proceed. The results were almost
recovery of starting materials.
12 There are a few reports describing the luminescence of silyl-substi-
tuted oligothiophenes. Their quantum yields were 0.23–0.75 with
violet-blue fluorescence. See: (a) A. Naka, Y. Matsumoto, T. Itano,
K. Hasegawa, T. Shimamura, J. Ohshita, A. Kunai, T. Takeuchi and
M. Ishikawa, J. Organomet. Chem., 2009, 694, 346; (b) J. K. Herrema,
P. F. van Hutten, R. E. Gill, J. Wildeman, R. H. Wieringa and
G. Hadziioannou, Macromolecules, 1995, 28, 8102.
13 See also: H. Nishihara, Y. Yamanoi and J.-i. Sato, Jpn Kokai
Tokkyo Koho, 2010, JP2010163405.
14 UV spectrum of 10 showed the red shift with the increase of
molecular extinction coefficient compared with bithiophene
(bithiophene: lmax = 304 nm, log e = 4.11. 10: lmax = 351 nm,
log e = 4.46). Kyushin et al. reported the bathochromic and
hyperchromic effect of silyl groups on the UV-visible spectrum of
aromatic compounds. See: (a) S. Kyushin, K. Yoshimura, K. Sato
and H. Matsumoto, Chem. Lett., 2009, 324; (b) S. Kyushin,
M. Ikarugi, M. Goto, H. Hiratsuka and H. Matsumoto, Organo-
metallics, 1996, 15, 1067; (c) S. Kyushin, T. Matsuura and
H. Matsumoto, Organometallics, 2006, 25, 2761; (d) S. Kyushin,
Y. Ishikita, H. Matsumoto, H. Horiuchi and H. Hiratsuka,
Chem. Lett., 2006, 64; (e) S. Kyushin, N. Takemasa,
H. Matsumoto, H. Horiuchi and H. Hiratsuka, Chem. Lett.,
2003, 1048.
15 Recently, Itazaki and Nakazawa reported the preparation of
disilanes by iron-catalyzed dehydrogenative coupling of tertiary
silanes under UV irradiation. See: M. Itazaki, K. Ueda and
H. Nakazawa, Angew. Chem., Int. Ed., 2009, 48, 3313.
c
7786 Chem. Commun., 2010, 46, 7784–7786
This journal is The Royal Society of Chemistry 2010