9588
S. Bhosale et al. / Tetrahedron 66 (2010) 9582e9588
A. 1,3-Dipolar Cycloaddition Chemistry; John Wiley: New York, NY, 1984; Vols.
4.3. Synthesis of 15a, 15c and 15d (Table 2)
1, 2; (d) Torssell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic
Synthesis; VCH: New York, NY, 1988; (e) Gothelf, K. V.; Jùrgensen, K. A. Chem.
Rev. 1998, 98, 863e909; (f) Kanemasa, S.; Tsuge, O. Heterocycles 1990, 30,
719e736; (g) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887e2902; (h)
Belen’kii, L. I. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis:
Novel Strategies in Synthesis, 2nd ed.; Feuer, H., Ed.; John Wiley: New Jersey,
2008; pp. 1e128.
As described inTable 2, reported procedures were followed for the
respective methodologies using CrO2, MnO2 and chloramine-T. Ana-
lytical data of 15a18 and 15c19 were matched with the literature values.
2. (a) Bhosale, S.; Kurhade, S.; Prasad, U. V.; Palle, V. P.; Bhuniya, D. Tetrahedron Lett.
2009, 50, 3948e3951; (b) Cross-references cited in 2a for previous methodologies.
3. For literature and synthetic applications of MagtrieveÔ (CrO2) see: (a) Liu, Y.-H.
Synlett 2008, 1103e1104 and references cited herein.; (b) Lee, R. A.; Donald, D. S.
Tetrahedron Lett. 1997, 38, 3857e3860; (c) Liao, Y.; Shabany, H.; Spilling, C. D.
4.3.1. 3-Phenyl-5-acetoxy-4,5-dihydroisoxazole (15a). Rf value: 0.5
(30% ethyl acetate in hexanes). Mp: 99e100 ꢀC (observed),
98e100 ꢀC (lit.18a). IR (neat): 1755 (ester) cmꢁ1. 1H NMR (400 MHz;
CDCl3):
d
2.08 (s, 3H); 3.37 (dd, J¼17.9 Hz, 1.2 Hz, 1H); 3.62 (dd,
ꢀ
Tetrahedron Lett. 1998, 39, 8389e8392; (d) Contour-Galcera, M.-O.; Piotout, L.;
J¼17.9 Hz, 6.8 Hz, 1H); 6.84 (dd, J¼6.9 Hz, 1.2 Hz, 1H); 7.42e7.48
Moinet, C.; Morgan, B.; Gordon, T.; Roubert, P.; Thurieau, C. Bioorg. Med. Chem.
Lett. 2001, 11, 741e745; (e) Wan, H.; Peng, Y. Monatsh. Chem. 2008, 139, 909e912.
4. For oxidation of aldoximes using MnO2, see: (a) Kiegiel, J.; Poplawska, M.;
(aromatics, 3H); 7.70e7.73 (aromatics, 2H). 13C NMR (100 MHz;
CDCl3):
d 21.24, 41.61, 96.19, 127.31 (2C), 128.57, 129.13 (2C), 131.07,
ꢀꢀ
Jozwik, J.; Kosior, M.; Jurczak, J. Tetrahedron Lett. 1999, 40, 5605e5608;
157.28, 169.93. HPLC-MS (m/z): 206.1 [Mþ1], 223.1 [Mþ18], 228.2
(b) Kudyba, I.; Jozwik, J.; Romanski, J.; Raczko, J.; Jurczak, J. Tetrahedron:
Asymmetry 2005, 16, 2257e2262.
5. For oxidation of aldoximes using Pb(OAc)4, see: Just, G.; Dahl, K. Tetrahedron
1968, 24, 5251e5269.
6. For oxidation of aldoximes using potassium ferricyanide and ceric ammonium
nitrate, see: (a) Gagneux, A. R.; Meier, R. Helv. Chim. Acta 1970, 53,
1883e1892; (b) Giurg, M.; Mlochowski, M. Pol. J. Chem. 1997, 71, 1093e1101;
(c) Arai, N.; Iwakoshi, M.; Tanabe, K.; Narasaka, K. Bull. Chem. Soc. Jpn. 1999,
72, 2277e2285.
7. Use of external radical source e.g., TEMPO and Galvinoxyl, selected in this study,
are well documented in the literature. Please see: (a) Barriga, S. Synlett 2001,
563; (b) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10,
4673e4676; (c) Li, F.; Tartakoff, S. S.; Castle, S. L. J. Org. Chem. 2009, 74,
9082e9093; (d) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131,
11234e11241; (e) Villamena, F. A. J. Phys. Chem. 2010, 114, 1153e1160; (f) Ka-
shiwabara, T.; Fuse, K.; Muramatsu, T.; Tanaka, M. J. Org. Chem. 2009, 74,
9433e9439; (g) Zhu, Z.-B.; Shi, M. Org. Lett. 2009, 11, 5278e5281; (h) Liu, W.;
Cao, H.; Zhang, H.; Chung, K.H.; He, C.; Wang, H.; Kwong, F.Y.; Lei, A. J. Am. Chem.
246, 130e134; (j) Chattopadhay, S. K.; Das, P. K.; Hug, G. L. J. Am. Chem. Soc. 1983,
105, 6205e6210; (k) Mitsui, M.; Kobori, Y.; Kawai, A.; Obi, K. J. Phys. Chem. A
2004, 108, 524e531.
8. For 1,3-DC reactions using chloramine-T, see: (a) Hassner, A.; Rai, K. M. L.
Synthesis 1989, 57e59; (b) Rai, K. M. L.; Hassner, A. Synth. Commun. 1997, 27,
467e472 and ref. cited herein.
9. (a) Radhakrishna, A. S.; Sivaprakash, K.; Singh, B. B. Synth. Commun. 1991, 21,
1625e1629; (b) Das, B.; Holla, H.; Mahender, G.; Banerjee, J.; Ravinder Reddy,
M. Tetrahedron Lett. 2004, 45, 7347e7350; (c) Prakash, O.; Pannu, K. Arkivoc
2007, xiii, 28e33; (d) Mendelsohn, B. A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V.
S.; Ciufolini, M. A. Org. Lett. 2009, 11, 1539e1542.
[Mþ23], 433.1 [M2þ23]. HPLC purity: 99.79%, tR: 19.22 min.
4.3.2. 5-Acetoxy-4,5-dihydroisoxazole-3-carboxylic acid, ethyl ester
(15c). Rf value: 0.5 (30% ethyl acetate in hexanes).1H NMR (400 MHz;
CDCl3):
d
1.39 (t, J¼7.1 Hz, 3H); 2.09 (s, 3H); 3.24 (dd, J¼18.8 Hz,1.7 Hz,
1H); 3.45 (dd, J¼19.1 Hz, 7.3 Hz, 1H); 4.39 (q, J¼7.1 Hz, 2H); 6.83 (dd,
J¼7.3 Hz,1.7 Hz,1H).13C NMR (100 MHz; CDCl3):
d 14.29, 21.03, 40.13,
62.74, 96.77, 152.224, 159.95, 169.38. HPLC-MS (m/z): 202.2 [Mþ1],
425.1 [M2þ23]. HPLC purity: 97.2%; tR: 7.62 min.
4.3.3. 3-(2-Phenylethyl)-5-acetoxy-4,5-dihydroisoxazole
value: 0.6 (20% ethyl acetate in hexanes). IR (neat): 1755 (ester)
cmꢁ1. 1H NMR (400 MHz; CDCl3):
(15d). Rf
d
2.06 (s, 3H); 2.76 (t, J¼8.3 Hz,
2H), 2.81 (d, J¼18.0 Hz, 1H); 2.96 (t, J¼8.1 Hz, 2H), 3.15 (dd,
J¼18.0 Hz, 6.8 Hz, 1H); 6.63 (d, J¼6.6 Hz, 1H); 7.20e7.26 (aromatics,
3H); 7.28e7.34 (aromatics, 2H). 13C NMR (100 MHz; CDCl3):
d 21.23,
29.19, 32.78, 43.85, 95.57, 126.71, 128.50 (2C), 128.83 (2C), 140.33,
159.10, 169.92. HPLC-MS: m/z 234.2 [Mþ1], 256.1 [Mþ23]; purity:
98.5%; tR: 10.73 min.
4.4. Recycling MagtrieveÔ (CrO2) in synthesis of 8a
To a solution of benzaldoxime (1.0 g, 8.26 mmol, 1.0 equiv) and
phenyl acetylene (2.71 mL, 24.79 mmol, 3.0 equiv) in 41 mL ace-
tonitrile, taken in a single neck round bottom flask, was added
MagtrieveÔ (6.93 g, 82.6 mmol, 10 equiv) and the reaction mixture
was heated at 80 ꢀC for 2 h while stirring. The solvent was decanted
and MagtreiveÔ was washed with acetonitrile (50 mLꢂ2). The
combined acetonitrile pool was condensed to get a crude product.
Whereas, the recovered MagtrieveÔ (6.90 g) was sequentially
treated with acetonitrile (50 mL) and distilled water (20 mLꢂ2)
each at 60 ꢀC for 0.5 h to remove traces of organic materials. Finally
the flask containing MagtrieveÔ was heated on a sand bath at
320e340 ꢀC for 4 h (air exposed).3b Reactivated MagtrieveÔ, thus
obtained, was reused for the synthesis of another crop of 8a.
The whole process was repeated two more times to get three
crops of crude compounds, which were then combined and puri-
fied by silica gel column chromatography (EtOAc/hexane) to obtain
8a in pure form (4.16 g, combined yield 76%).
10. (a) For MnO2 assisted deoximation of oximes into carbonyl compounds and
a proposed mechanism, see: Shinada, T.; Yoshihara, K. Tetrahedron Lett. 1995,
36, 6701e6704; (b) For photosensitized deoximation of oximes and mechanism
involving iminoxy radical, see: (i) Lijser, H. J. P.; Fardoun, F. H.; Sawyer, J. R.;
Quant, M. Org. Lett. 2002, 4, 2325e2328 and references cited herein; (ii) Lijser,
H. J. P.; Hsu, S.; Marquez, B. V.; Park, A.; Sanguantrakun, N.; Sawyer, J. R. J. Org.
Chem. 2006, 71, 7785e7792.
11. In absence of any direct evidence for intramolecular hydrogen radical transfer
from oxime-OH to Cr, we looked at any literature evidence for similar process.
For examples of hydrogen transfer to Cr]O and Cr moieties to form CreOeH
and CreH bonds, please see: (a) Parsell, T. H.; Yang, M.-Y.; Borovik, A. S. J. Am.
Chem. Soc. 2009, 131, 2762e2763; (b) Bakac, A.; Guzei, I. A. Inorg. Chem. 2000,
39, 736e740; (c) Agapie, T.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2007,
129, 14281e14295.
12. For
s-type iminoxy radicals, see: (a) Chapman, O. L.; Heckert, D. C. Chem.
Commun. 1966, 242e243; (b) Norman, R. O. C.; Gilbert, B. C. J. Phys. Chem. 1967,
71, 14e19; (c) Ref. 5 and 10b. (d) Lindsay, D.; Horswill, E. C.; Davidson, D. W.;
Ingold, K. U. Can. J. Chem. 1974, 52, 3554e3556.
13. For use of TEMPO-derived oxoammonium species in oxidation of alcohols to
carbonyl compounds, and mechanistic studies of these reactions, please see: (a)
de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis 1996, 1153e1174; (b)
Bolm, C.; Fey, T. Chem. Commun. 1999, 1795e1796; (c) Ansari, I. A.; Gree, R. Org.
Lett. 2002, 4, 1507e1509; (d) Comminges, C.; Barhdadi, R.; Doherty, A. P.;
O’Toole, S.; Troupel, M. J. Phys. Chem. A 2008, 112, 7848e7855.
Acknowledgements
14. For 6a: (a) Kaufman, J. V. R.; Picard, J. P. Chem. Rev. 1959, 59, 429e461; (b) Wiley,
R. H.; Wakefield, B. J. J. Org. Chem. 1960, 25, 546e551; (c) Yu, Z.-X.; Caramella, P.;
Houk, K. N. J. Am. Chem. Soc. 2003, 125, 15420e15425.
15. For 7a: (a) Franz, J. E.; Pearl, H. K. J. Org. Chem. 1976, 41, 1296e1297; (b) Harada,
K.; Kaji, E.; Zen, S. Chem. Pharm. Bull. 1980, 28, 3296e3303.
Authors are grateful to Drs. Rashmi Barbhaiya and Kasim
Mookhtiar for their support and encouragement. SB is thankful to
Andhra University for registering in Ph.D. program, and Professors
Y.L.M. Murthy and U.V. Prasad for their guidance. Authors also
acknowledge the reviewers for their important suggestions.
16. For 8a: (a) Beam, C. F.; Dyer, M. C. D.; Schwarz, R. A.; Hauser, C. R. J. Org. Chem.
ꢀ
1970, 35, 1806e1810; (b) L’abbe, G.; Mathys, G. J. Org. Chem. 1974, 39,
1221e1225; (c) Ref. 13b. (d) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Org. Lett. 2009,
11, 3982e3985.
17. For 9a: Padwa, A.; MacDonald, J. G. J. Org. Chem. 1983, 48, 3189e3195.
18. For 15a: (a) Rahman, A.; Clapp, L. B. J. Org. Chem. 1976, 41, 122e125; (b) Ref. 4a.
19. For 15c: Conti, D.; Rodriquez, M.; Sega, A.; Taddei, M. Tetrahedron Lett. 2003, 44,
5327e5330.
References and notes
1. For nitrile oxide and 1,3-DC reactions, see: (a) Grundmann, C. Synthesis 1970,
344e359; (b) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410e416; (c) Padwa,