Table 3 Substrate scope in the reactiona
exploring other methylene pronucleophiles and the synthetic
application studies are underway in our laboratory.
We are grateful for the financial support from National
Natural Science Foundation of China (21072145), Foundation
for the Author of National Excellent Doctoral Dissertation of
PR China (200931), Natural Science Foundation of Jiangsu
Province of China (BK2009115). We also thank Professor Dr
Kuiling Ding and Dr Zheng Wang from Shanghai Institute of
Organic Chemistry for valuable discussion and amendments
on this paper.
Entry Products (3a–p)
Time/h Yieldb
(%)
drc erd
(3/30)
1
2
R1, R2 = Ph, 3a
R1, R2 = 3,5-(OMe)2C6H3, 3b 72
48
86
77
54
67
73
65
68
82
80
66
78
58
74
71
84
420 : 1 95 : 5
420 : 1 96 : 4
420 : 1 95 : 5
420 : 1 95 : 5
420 : 1 96 : 4
420 : 1 95 : 5
420 : 1 92 : 8
420 : 1 96 : 4
420 : 1 95 : 5
420 : 1 96 : 4
420 : 1 97 : 3
420 : 1 93 : 7
420 : 1 96 : 4
420 : 1 95 : 5
1.25 : 1 82 : 18
96 : 4e
3
4
5
6
7
8
9
10
11
12
13
14
15
R1, R2 = 4-MeC6H4, 3c
R1, R2 = 4-i-PrC6H4, 3d
R1, R2 = 4-FC6H4, 3e
R1, R2 = 2-ClC6H4, 3f
R1, R2 = 3-ClC6H4, 3g
R1, R2 = 4-ClC6H4, 3h
R1, R2 = 2-BrC6H4, 3i
R1, R2 = 4-BrC6H4, 3j
R1,R2 = 4-CF3C6H4, 3k
R1, R2 = 2-furyl, 3l
72
72
48
48
36
24
24
48
36
72
48
Notes and references
1 (a) T. L. Ho, Carbocycle Construction in Terpene Synthesis, Wiley-
VCH, Weinheim, Germany, 1988; (b) T. Bui and C. F. Barbas III,
Tetrahedron Lett., 2000, 41, 6951.
2 For selected publications: (a) S. Yao, M. Johannsen, H. Audrain,
R. G. Hazell and K. A. Jøgensen, J. Am. Chem. Soc., 1998, 120,
8599; (b) J. Long, J. Hu, X. Shen, B. Ji and K. Ding, J. Am. Chem.
Soc., 2002, 124, 10; (c) Y. Yuan, J. Long, J. Sun and K. Ding,
Chem.–Eur. J., 2002, 8, 5033; (d) K. Ding, H. Du, Y. Yuan and
J. Long, Chem.–Eur. J., 2004, 10, 2872; (e) F. Aznar, A. B. Garcıa
and M. A. Cabal, Adv. Synth. Catal., 2006, 348, 2443;
(f) D. B. Ramachary, N. S. Chowdari and C. F. Barbas III, Angew.
Chem., Int. Ed., 2003, 42, 4233; (g) Y. Wang, H. Li, Y.-Q. Wang,
Y. Liu, B. M. Foxman and L. Deng, J. Am. Chem. Soc., 2007, 129,
6364.
R1, R2 = 2-thienyl, 3m
R1, R2 = 2,4-(Cl)2C6H3, 3n 48
R1 = Ph, R2 = 4-ClC6H4, 3o 36
16
R1, R2 = cyclohexyl, 3p
48
—
—
—
a
Unless specified, see the experimental section in the ESIw for reaction
conditions. Isolated yields. Determined by chiral HPLC and 1H
d
NMR. Determined by chiral HPLC. Minor diastereomer.
b
c
e
3 For selected publications: (a) C. Palomo and A. Mielgo, Angew.
Chem., Int. Ed., 2006, 45, 7876; (b) B. List, Chem. Commun., 2006,
819; (c) J. W. Yang, M. H. Fonseca and B. List, J. Am. Chem. Soc.,
2005, 127, 15036; (d) Y. Huang, A. M. Walji, C. H. Larsen and D.
W. C. MacMillan, J. Am. Chem. Soc., 2005, 127, 15051;
(e) D. Enders, M. R. M. Huttl, C. Grondal and G. Raabe, Nature,
2006, 441, 861; (f) W. Wang, H. Li, J. Wang and L. Zu, J. Am.
Chem. Soc., 2006, 128, 10354.
4 For selected publications: (a) C. Schneider and O. Reese, Angew.
Chem., Int. Ed., 2000, 39, 2948; (b) E. Maudru, G. Singh and
R. H. Wightman, Chem. Commun., 1998, 1505; (c) R. J. Ferrier and
S. Middleton, Chem. Rev., 1993, 93, 2779; (d) E. A. Carrie and
S. J. Miller, J. Am. Chem. Soc., 2007, 129, 256; (e) J. Zhou and
B. List, J. Am. Chem. Soc., 2007, 129, 7498.
5 (a) N. Halland, P. S. Aburel and K. A. Jørgensen, Angew. Chem.,
Int. Ed., 2004, 43, 1272; (b) J. Pulkkinen, P. S. Aburel, N. Halland
and K. A. Jørgensen, Adv. Synth. Catal., 2004, 346, 1077.
6 Y. Hoashi, T. Yabuta and Y. Takemoto, Tetrahedron Lett., 2004,
45, 9185.
7 L. Wu, G. Bencivenni, M. Mancinelli, A. Mazzanti, G. Bartoli and
P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 7196.
8 D. B. Ramachary, Y. V. Reddy and B. V. Prakash, Org. Biomol.
Chem., 2008, 6, 719.
also suitable substrates for this reaction, with good yields and
high stereoselectivities being attained under the optimized
conditions (entries 12 and 13). Furthermore, non-symmetrical
divinyl ketone 1o provided the desired product in 84% yield,
albeit with a somewhat inferior diastereoselectivity (1.25 : 1)
and enantioselectivity (entry 15). We have examined the
reactivity of dienones with aliphatic residues for this reaction,
using a dicyclohexyl substituted divinyl ketone 1p as the model
substrate. Unfortunately, under our optimized conditions,
catalyst IV was found to be ineffective for the transformation
involving this compound (entry 16). Finally, we were fortunate
to obtain single crystals of compound 3n, which allows for an
unambiguous assignation of the trans configuration of C2 and
C6 stereocenters by X-ray crystallographic analysis (see ESIw).
The catalyst screening results discussed above provide some
useful hints for the mechanism of this reaction. In contrast
with the bifunctional catalysts IV and V, neither the basic
cinchona alkaloids I–III (and VI) nor the acidic thiourea VII
exhibited appreciable catalytic activity in the reaction, suggesting
that a co-activation of both reaction partners by the bifunctional
catalyst seems to be working for the first Michael addition to
intermediate 4. Catalyst IV, however, is not active enough for
the second step of the reaction, which necessitates a stronger
base such as KOH for the deprotonation and subsequent
Michael addition–cyclization.
9 E. P. Kohler and R. W. Helmkamp, J. Am. Chem. Soc., 1924, 46,
1267.
10 J. Li, W. Xu, G. Chen and T. Li, Ultrason. Sonochem., 2005, 12,
473.
11 A. C. Silvanus, B. J. Groombridge, B. I. Andrews, G. Kociok-Kohn
and D. R. Carbery, J. Org. Chem., 2010, 75, 7491.
12 D. Zhang, X. Xu, J. Tan and Q. Liu, Synlett, 2010, 917.
13 The selected leading publications for the thiourea-based organo-
catalysis: (a) M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc.,
1998, 120, 4901; (b) P. R. Schreiner and A. Wittkopp, Org. Lett.,
2002, 4, 217; (c) O. Tomotaka, Y. Hoashi and Y. Takemoto,
J. Am. Chem. Soc., 2003, 125, 12672; (d) Y. Sohtome,
Y. Hashimoto and K. Nagasawa, Adv. Synth. Catal., 2005, 347,
1643; (e) J. Wang, H. Li, X. Yu, L. Zu and W. Wang, Org. Lett.,
2005, 7, 4293; (f) C.-L. Cao, M.-C. Ye, X.-L. Sun and Y. Tang,
Org. Lett., 2006, 8, 2901.
14 (a) B. Vakulya, S. Varga, A. Csampai and T. Soos, Org. Lett.,
2005, 7, 1967; (b) S. H. McCooey and S. J. Connon, Angew. Chem.,
Int. Ed., 2005, 44, 6367; (c) J. Ye, D. J. Dixon and P. S. Hynes,
Chem. Commun., 2005, 4481; (d) B. Li, L. Jiang, M. Liu, Y. Chen,
L. Ding and Y. Wu, Synlett, 2005, 603.
In summary, we have successfully developed a new route
to synthesize the enantiomerically enriched 4-nitrocyclo-
hexanones starting from divinyl ketones and nitromethane
by sequential use of a thiourea-modified cinchona alkaloid as
a bifunctional catalyst and a base, with good yields and excellent
diastereoselectivities as well as high enantioselectivities being
achieved for most symmetrical aryl- or heteroaryl divinyl
ketones. Further extension of the present protocol by
c
3994 Chem. Commun., 2011, 47, 3992–3994
This journal is The Royal Society of Chemistry 2011