attacks the C-atom of the CQN bond13 of 1a to yield
(1,3-diphenyl-but-3-enylidene)-phenyl-amine 3a, thereby potassium
anilide is eliminated. A second attack of 6a at the imino-group
of 3a occurs and subsequently the trimerization product 7a
cyclizes to 5a. The proposed mechanism is summarized in
Fig. 6.
Chemistry, ed. S. P. Parker, McGraw-Hill, New York, 1982,
p. 215; P. Yates, in Advances in Alicyclic Chemistry, ed. H. Hart
and G. J. Karabatsos, Academic Press, New York, 1968, vol. 2,
p. 59; G. W. Wheland and D. E. Mann, J. Chem. Phys., 1949,
17, 264.
5 M. Alonso and B. Herradon, J. Comput. Chem., 2010, 31,
917; H. Mollerstedt, M. C. Piqueras, R. Crespo and H. Ottosson,
J. Am. Chem. Soc., 2004, 126, 13938; V. I. Minkin, M. N. Glukhovtsev
and B. Ya-Simkin, Aromaticity and Antiaromaticity: Electronic and
Structural Aspects, Wiley, New York, 1994.
The reaction of N-alkyl imines, N-phenyl-(1-phenyl-propyl-
idene)-amines, or N-phenyl-(1-alkyl-ethylidene)-amines with
potassium hydride did not yield the corresponding fulvenes.
NMR-experiments upon KH addition suggested that the
tautomerization to aldimines or isomerization of the double
bond into the alkyl-chain prevents the initial attack.
6 X. Yang, Y. Zhang and J. Huang, Appl. Organomet. Chem., 2006,
20, 130; J. Paradies, G. Kehr, R. Frohlich and G. Erker, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 15333–15337; G. Erker, Chem.
Commun., 2003, 1469; H. G. Alt and A. Koppl, Chem. Rev., 2000,
100, 1205; A. Bertuleit, M. Konemann, L. Duda, G. Erker and
R. Frohlich, Top. Catal., 1999, 7, 37; W. Kaminsky, J. Chem. Soc.,
Dalton Trans., 1998, 1413; M. Bochmann, J. Chem. Soc., Dalton
Trans., 1996, 255; H. H. Brintzinger, D. Fischer, R. Mulhaupt,
B. Rieger and R. M. Waymouth, Angew. Chem., Int. Ed. Engl.,
1995, 34, 1143; T. J. Marks, Acc. Chem. Res., 1992, 25, 57.
7 K. Strohfeldt and M. Tacke, Chem. Soc. Rev., 2008, 37, 1174;
C. Pampillon, N. J. Sweeney, K. Strohfeldt and M. Tacke,
J. Organomet. Chem., 2007, 692, 2153; F.-J. K. Rehmann,
L. P. Cuffe, O. Mendoza, D. K. Rai, N. Sweeney, K. Strohfeldt,
W. M. Gallagher and M. Tacke, Appl. Organomet. Chem., 2005,
19, 293; M. Tacke, L. T. Allen, L. Cuffe, W. M. Gallagher, Y. Lou,
O. Mendoza, H. Muller-Bunz, F.-J. Rehmann and N. Sweeney,
J. Organomet. Chem., 2004, 689, 2242; P. Kopf-Maier and
H. Kopf, Chem. Rev., 1987, 87, 1137.
8 G. Erker, G. Kehr and R. Frohlich, Organometallics, 2008, 27, 3;
G. Erker, Coord. Chem. Rev., 2006, 250, 1056; G. Erker, Coord.
Chem. Rev., 2006, 250, 36; M. Diekmann, G. Bocksteigel,
A. Lutzen, M. Friedemann, W. Saak, D. Haase and
R. Beckhaus, Organometallics, 2006, 25, 339; R. Koch, E. Bolter,
J. Stroot and R. Beckhaus, J. Organomet. Chem., 2006, 691, 4539;
Y. C. Won, H. Y. Kwon, B. Y. Lee and Y.-W. Park, J. Organomet.
Chem., 2003, 667, 13; K. Kunz, G. Erker, S. Doring, S. Bredeau,
G. Kehr and R. Frohlich, Organometallics, 2002, 21, 1031;
R. Beckhaus, A. Lutzen, D. Haase, W. Saak, J. Stroot, S. Becke
and J. Heinrichs, Angew. Chem., Int. Ed., 2001, 40, 2056; T. Koch,
S. Blaurock, F. B. Somoza, A. Voigt, R. Kirmse and E. Hey-
Hawkins, Organometallics, 2000, 19, 2556; H. G. Alt and M. Jung,
J. Organomet. Chem., 1998, 568, 87; J. J. Eisch, X. Shi and
F. A. Owuor, Organometallics, 1998, 17, 5219; K. M. Kane,
P. J. Shapiro, A. Vij and R. Cubbon, Organometallics, 1997, 16,
4567; R. Teuber, R. Koppe, G. Lint and M. Tacke, J. Organomet.
Chem., 1997, 545–546, 105; G. Erker and S. Wilker, Organo-
metallics, 1993, 12, 2140; R. L. Haltermann, Chem. Rev., 1992,
92, 965.
Heterocyclic substituted imines, which can form 5-membered
chelates with potassium, for instance N-phenyl-(2-pyridylethyl-
idene)-amine or N-phenyl-(thiophen-2-yl-ethylidene)-amine,
do neither convert to fulvenes under the general conditions
nor under harsh conditions (110 1C, diglyme or 1,4-dioxane).
If higher temperatures are applied, an additional by-product
was observed. This N-substituted 2,4-aryl-pyrrole is formed
due to cyclization of the intermediate 3.
The reaction of 3- or 4-substituted heterocyclic imines with
potassium hydride under harsh conditions (110 1C, diglyme) was
rather unselective leading to a mixture of various compounds.
In conclusion, a novel reaction was discovered. A series of
novel 1,3,6-substituted 6-aminofulvenes was synthesized
by a facile approach, which utilizes inexpensive and readily
available imines as starting material. Furthermore, the mecha-
nism of the reaction was investigated. We propose that the
potassium-mediated trimerization reaction of N-aryl imines
proceeds via an observed dimerization and a transient trimeriza-
tion product, which subsequently cyclizes, thereby giving rise
to novel fulvenes. In terms of organic synthesis a variety of
fulvenes suited to stabilize constrained geometry type olefin
polymerization catalysts is described.14
Financial support by NanoCat, an International Graduate
Program within the Elitenetzwerk Bayern, is gratefully acknow-
ledged. We thank Dr G. Glatz for his support in the X-ray labs.
Notes and references
9 I. Erden, F.-P. Xu, A. Sadoun, W. Smith, G. Sheff and M. Ossun,
J. Org. Chem., 1995, 60, 813; S. J. Jacobs, S. A. Schulz, R. Javin,
J. Novak and D. A. Dougherty, J. Am. Chem. Soc., 1993, 115,
1744; K. J. Stone and R. D. Little, J. Org. Chem., 1984, 49, 1849;
G. Buchi, D. Berthet, R. Decorzant, A. Grieder and A. Hauser,
J. Org. Chem., 1976, 41, 3208; G. McCain, J. Org. Chem., 1958, 23,
632; J. H. Day, Chem. Rev., 1953, 53, 167.
10 For selected reviews refer to: M. Neuschwander, in The chemistry
of double bonded functional groups: Part 2, ed. S. Patai, John Wiley
& Sons, Chichester, 1989, pp. 1131–1268; K.-P. Zeller, Pentaful-
venes. In Methoden der Organischen Chemie, Georg Thieme Verlag,
Stuttgart, 1985, vol. 5/2C, pp. 504–684; E. D. Bergmann, Chem.
Rev., 1968, 68, 41.
1 J. Thiele and H. Balhorn, Justus Liebigs Ann. Chem., 1906, 348, 1.
2 A. L. Sklar, J. Chem. Phys., 1937, 5, 669; E. Bergmann, Ber. Dtsch.
Chem. Ges. B, 1930, 63, 1617; N. C. Courtot, Ann. Chim. Appl.,
1915, 4, 168.
3 K. J. Lee, J.-K. Choi, E. K. Yum and S. Y. Cho, Tetrahedron Lett.,
2009, 50, 6698; J. Barluenga, S. Martinez, A. L. Suarez-Sobrino
and M. Tomas, J. Am. Chem. Soc., 2002, 124, 5948; J. Barluenga,
S. Martinez, A. L. Suarez-Sobrino and M. Tomas, J. Am. Chem.
Soc., 2001, 123, 11113; Y. Himeda, H. Yamataka, I. Ueda and
M. Hatanaka, J. Org. Chem., 1997, 62, 6529; J. W. Coe,
M. G. Vetelino and D. S. Kemp, Tetrahedron Lett., 1994, 35,
6627; J. H. Rigby, in Comprehensive Organic Synthesis, ed.
B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 5,
p. 626; Y. Wang, D. Mukherjee, D. Birney and K. N. Houk, J. Org.
Chem., 1990, 55, 4504; I. Fleming, Frontier Orbitals and Organic
11 K. Kutlescha, T. Irrgang and R. Kempe, Adv. Synth. Catal., 2010,
352, 3126.
12 R. Knorr, A. Weiß, P. Low and E. Rapple, Chem. Ber., 1980, 113,
2462.
Chemical Reactions, John Wiley
& Sons, New York, 1985,
pp. 178–181; K. N. Houk and L. J. Luskus, J. Org. Chem., 1973,
38, 3836.
4 E. S. Replogle, G. W. Trucks and S. W. Staley, J. Phys. Chem.,
1991, 95, 6908; R. S. Mulliken, in McGraw-Hill Encyclopedia of
13 B. Blank and R. Kempe, J. Am. Chem. Soc., 2010, 132, 924.
14 H. Braunschweig and F. M. Breitling, Coord. Chem. Rev., 2006,
250, 2691; J. Cano and K. Kunz, J. Organomet. Chem., 2007, 692,
4411.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4183–4185 4185